Skip to main content
Log in

Some Cubane Derivatives as Potential Components of Solid Gas Generator Propellants

  • High-Energy Compounds
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The efficiency of using seven cubane derivatives as dispersing components of solid generator propellants was studied. With cubane, bicubyl, or 1,4-dicubylbenzene used as a propellant dispersant, the aerial vehicle range can be increased to the level considerably exceeding the range reached with other compounds considered for this purpose previously. The use of nitro derivatives of cubane such as 1,4-dinitrocubane, 1,3,5,7-tetranitrocubane, 1,2,3,5,7-pentanitrocubane, and 4-bis(nitroxymethyl)cubane ensures somewhat shorter range than that reached with cubane, bicubyl, or 1,4-dicubylbenzene, but this range is still somewhat longer than when using furazan derivatives as dispersants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Aleksandrov, V.N., Bytskevich, V.M., Verkholomov, V.K., Gramenitskii, M.D., Dulepov, N.P., Skibin, V.A., Surikov, E.V., Khil’kevich, V.Ya., and Yanovskii, L.S., Integral’nye pryamotochnye vozdushno-reaktivnye dvigateli na tverdykh toplivakh (Osnovy teorii rascheta) (Integral Solid Propellant Ramjets (Principles of Calculation Theory)), Moscow: Akademkniga, 2006.

    Google Scholar 

  2. Yanovskii, L.S., Lempert, D.B., Raznoschikov, V.V., and Averkov, I.S., Russ. J. Appl. Chem., 2019, vol. 92, no. 3, pp. 367–388. https://doi.org/10.1134/S1070427219030078 

    Article  CAS  Google Scholar 

  3. Yanovskii, L.S., Lempert, D.B., Raznoschikov, V.V., Averkov, I.S., Zyuzin, I.N., Zholudev, A.F., and Kislov, M.B., Russ. Chem. Bull., 2019, vol. 68, no. 10, pp. 1848–1855. https://doi.org/10.1007/s11172-019-2634-9 

    Article  CAS  Google Scholar 

  4. Lempert, D.B., Kazakov, A.I., Dorofeenko, E.M., Smirnov, A.S., Raznoschikov, V.V., Averkov, I.S., and Yanovsky, L.S., Russ. J. Phys. Chem. B, 2020, vol. 14, no. 4, pp. 579–586. https://doi.org/10.1134/S1990793120040090 

    Article  CAS  Google Scholar 

  5. Lempert, D.B., Zyuzin, I.N., Nabatova, A.V., Kazakov, A.I., and Yanovskii, L.S., Combust., Explos., Shock Waves, 2019, vol. 55, no. 6, pp. 644–647. https://doi.org/10.1134/S0010508219060029 

    Article  Google Scholar 

  6. Oishi, S.S., Botelho, E., Luscombe, C.K., and Rezende, M.C., Polímeros, 2014, vol. 24, no. 5, pp. 541–546. https://doi.org/10.1590/0104-1428.1623

    Article  CAS  Google Scholar 

  7. Kybett, B.D., Carroll, S., Natalis, P., Bonnell, D.W., Margrave, J.L., and Franklin, J.L., J. Am. Chem. Soc., 1966, vol. 88, no. 3, pp. 626–626. https://doi.org/10.1021/ja00955a056

    Article  CAS  Google Scholar 

  8. Eaton, P.E., Angew. Chem. Int. Ed., 1992, vol. 31, no. 11, pp. 1421–1436. https://doi.org/10.1002/anie.199214211

    Article  Google Scholar 

  9. Eaton, P.E., Pramod, K., Emrick, T., and Gilardi, R., J. Am. Chem. Soc., 1999, vol. 121, no. 17, pp. 4111–4123. https://doi.org/10.1021/ja983441f

    Article  CAS  Google Scholar 

  10. Eaton, P.E., Ravi Shankar, B.K., Price, G.D., Pluth, J.J., Gilbert, E.E., Alster, J., and Sandus, O., J. Org. Chem., 1984, vol. 49, no. 1, pp. 185–186. https://doi.org/10.1021/jo00175a044

    Article  CAS  Google Scholar 

  11. Eaton, P.E., Yusheng Xiong, and Gilardi, R., J. Am. Chem. Soc., 1993, vol. 115, no. 22, pp. 10195–10202. https://doi.org/10.1021/ja00075a039

    Article  CAS  Google Scholar 

  12. Lukin, K.A., Jianchang Li, Eaton, P.E., Kanomata, N., Hain, J., Punzalan, E., and Gilardi, R., J. Am. Chem. Soc., 1997, vol. 119, no. 41, pp. 9591–9602. https://doi.org/10.1021/ja970552q

    Article  CAS  Google Scholar 

  13. Eremenko, L.T., in Proc. 27th Int. Pyrotechnics Seminar, Grand Junction, Colorado (USA), 2000, pp. 865–876.

  14. Romanova, L.B., Barinova, L.S., Zakharov, V.V., Eremenko, L.T., Aleksandrov, G.G., and Eremenko, I.L., Russ. Chem. Bull., 2010, vol. 59, no. 5, pp. 1051–1055. https://doi.org/10.1007/s11172-010-0204-2 

    Article  CAS  Google Scholar 

  15. Kirklin, D.R., Churney, K.L., and Domalski, E.S., J. Chem. Thermodyn., 1989, vol. 21, no. 11, pp. 1105–1113. https://doi.org/10.1016/0021-9614(89)90098-0

    Article  CAS  Google Scholar 

  16. Avdonin, V.V., Kirpichev, E.I., Rubtsov, Yu.I., Romanova, L.B., Ivanova, M.E., and Eremenko, L.T., Russ. Chem. Bull., 1996, vol. 45, no. 10, pp. 2342–2344. https://doi.org/10.1007/BF01435379 

    Article  Google Scholar 

  17. Kizin, A.N., Dvorkin, P.L., Ryzhova, G.L., and Lebedev, Yu.A., Russ. Chem. Bull., 1986, vol. 35, no. 2, pp. 343–346. https://doi.org/10.1007/BF00952920 

    Article  Google Scholar 

  18. Miroshnichenko, E.A., Lebedev, V.P., and Matyushin, Yu.N., Dokl. Phys. Chem., 2002, vol. 382, nos. 4–6, pp. 40–42. https://doi.org/10.1023/A:1014499229527 

    Article  CAS  Google Scholar 

  19. Sorokin, V.A., Yanovskii, L.S., Kozlov, V.A., Surikov, E.V., Sharov, M.S., Fel’dman, V.D., Frantskevich, V.P., Zhivotov, N.P., Abashev, V.M., and Chervakov, V.V., Raketno-pryamotochnye dvigateli na tverdykh i pastoobraznykh toplivakh. Osnovy proektirovaniya i eksperimental’noi otrabotki (Solid- and Pasty-Propellant Rocket Ramjets. Principles of Designing and Experimental Development), Moscow: Fizmatlit, 2010, pp. 104–238.

    Google Scholar 

  20. Raznoschikov, V.V., Polet, 2008, no. 4, pp. 28–32.

    Google Scholar 

  21. Sorokin, V.A., Yanovskii, L.S., Yagodnikov, D.A., Frantskevich, V.P., Surikov, E.V., Raznoschikov, V.V., Zakharov, N.N., Tikhomirov, M.A., and Sharov, M.S., Proektirovanie i otrabotka raketno-pryamotochnykh dvigatelei na tverdom toplive (Designing and Development of Solid-Propellant Rocket Ramjets), Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 2016.

    Google Scholar 

  22. Yanovskii, L.S., Lempert, D.B., Raznoschikov, V.V., Averkov, I.S., Sharov, M.S., Combust., Explos., Shock Waves, 2020, vol. 56, no. 1, pp. 71–82. https://doi.org/10.1134/S0010508220010098 

    Article  Google Scholar 

  23. Levitskii, S.V., and Sviridov, N.A., Dinamika poleta (Flight Dynamics), Moscow: Voenno-Vozdushnaya Inzh. Akad. im. N.E. Zhukovskogo, 2008.

    Google Scholar 

  24. Trusov, B.G., in III Mezhdunarodnyi simpozium “Gorenie i plazmokhimiya” (II Int. Symp. “Combustion and Plasma Chemistry”), Almaty: Kaz. Univ., 2005, pp. 52–57.

  25. Eaton, P.E. and Cole, T.W., J. Am. Chem. Soc., 1964, vol. 86, no. 15, pp. 3157–3158. https://doi.org/10.1021/ja01069a041

    Article  CAS  Google Scholar 

  26. Eaton, P.E., Gilardi, R.L., and Zhang, M.-X., Adv. Mater., 2000, vol. 12, no. 15, pp. 1143–1148.

    Article  CAS  Google Scholar 

Download references

Funding

The study was funded by the Institute of Problems of Chemical Physics, Russian Academy of Sciences, theme nos. 0089-2019-0005 (state registry no. АААА-А19-119101690058-9), Basic and Problem-Oriented Research in the Field of Development of Energetic Condensed Systems for Various Purposes, and 0089-2019-0017 (state registry no. АААА-А19-119100800130-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Lempert.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 2, pp. 184–194, January, 2021 https://doi.org/10.31857/S0044461821020067

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lempert, D.B., Zyuzin, I.N., Averkov, I.S. et al. Some Cubane Derivatives as Potential Components of Solid Gas Generator Propellants. Russ J Appl Chem 94, 172–181 (2021). https://doi.org/10.1134/S1070427221020063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221020063

Keywords:

Navigation