Skip to main content
Log in

Synthesis of Highly Dispersed Aluminum Magnesium Oxides from the Product of Centrifugal Thermal Activation of Gibbsite

  • Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The possibility of preparing magnesium aluminate by the reaction of the product of centrifugal thermal activation of gibbsite with a saturated aqueous solution of magnesium nitrate at room temperature and 150°С was studied by X-ray diffraction, thermal, microscopic, adsorption, and chemical analysis methods. The reaction at 150°C between the components taken in the stoichiometric ratio with respect to the cations yields the phase of a layered double hydroxide [Mg0.33Al0.66(OH)2](NO3)0.6·0.013H2O. Its heat treatment at 550°C ensures the formation of stoichiometric spinel MgAl2O4 with the specific surface area of ~150 m2 g–1. Traditional impregnation of the product of centrifugal thermal activation of gibbsite with a concentrated magnesium nitrate solution, taken in an amount corresponding to the moisture capacity of the solid phase, at room temperature, followed by heat treatment at 550°С, yields a solid solution based on the low-temperature form γ-Al2O3 with the specific surface area of ~180 m2 g–1, containing ~4.55 wt % Mg. The samples obtained differ in the particle morphology and in the magnesium content on the surface. As compared to the traditional coprecipitation method, the suggested procedure allows considerable reduction of the reactant amounts and number of process steps and minimization or complete elimination of the wastewater formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Evans, D.G. and Slade, R.C.T., Struct. Bond., 2006, vol. 119, pp. 1–87. https://doi.org/10.1007/430_005

    Article  CAS  Google Scholar 

  2. Li, F. and Duan, X., Struct. Bond., 2006, vol. 119, pp. 193–223. https://doi.org/10.1007/430_007

    Article  CAS  Google Scholar 

  3. Gareth, R., O’Hare, W., and O’Hare, D., J. Mater. Chem., 2006, vol. 16, pp. 3065–3074. https://doi.org/10.1039/B604895A

    Article  Google Scholar 

  4. Bocanegra, S.A., Guerrero-Ruiz, А., Scelza, O.A., and de Miguel, С.Р., Catal. Ind., 2013, no. 5, pp. 61–73. https://doi.org/10.1134/S2070050413010030

    Article  Google Scholar 

  5. Pankina, G.B., Chernavsky, P.А., and Lunin, V.V., Russ. J. Phys. Chem. A, 2013, vol. 87, no. 10, pp. 1622–1626. https://doi.org/10.1134/S0036024413100154

    Article  CAS  Google Scholar 

  6. Belskaya, O.B., Stepanova, L.N., Gulyaeva, T.I., Golinskii, D.V., Belyi, A.S., and Likholobov, V.A., Kinet. Catal., 2015, vol. 56, no. 5, pp. 655–662. https://doi.org/10.1134/S0023158415050018 

    Article  CAS  Google Scholar 

  7. Sadykov, V.A., Chub, O.V., Chesalov, Yu.A., Mezentseva, N.V., Pavlova, S.N., Arapova, M.V., Rogov, V.A., Simonov, M.N., Roger, A.C., Parhomenko, K.V., and Veen, A.C.V., Top. Catal., 2016, vol. 59, pp. 1332–1342. https://doi.org/10.1007/s11244-016-0659-y

    Article  CAS  Google Scholar 

  8. Ivanova, A.S., Skripchenko, E.V., Moroz, E.M., and Litvak, G.S., Kustova, G.N., and Krivoruchko, O.P., Izv. Sib. Otdel. Akad. Nauk SSSR, 1989, issue 6, no. 6, pp. 116–122.

    Google Scholar 

  9. Thesis, F.L., Ayoko, G.A., and Frost, R.L., Appl. Surf. Sci., 2018, vol. 134, pp. 1481–1492. https://doi.org/10.1016/j.apsusc.2016.04.150

    Article  CAS  Google Scholar 

  10. Othman, M.R., Helwani, Z., Martunus, F., and Fernando, W.J.N., Appl. Organomet. Chem., 2009, vol. 23, pp. 335–346. https://doi.org/10.1002/aoc.1517

    Article  CAS  Google Scholar 

  11. Krivoruchko, O.P., Buyanov, R.A., Paramsin, S.M., and Zolotovskii, B.P., Kinet. Catal., 1988, vol. 29, nos. 1–2, pp. 223–224.

    Google Scholar 

  12. Koo, K.Y., Roh, H.S., Seo, Y.T., Seo, D.J., Yoon, W.L., and Park, S.B., Appl. Catal. A: General, 2008, vol. 340, pp. 183–190. https://doi.org/10.1016/j.apcata.2008.02.009

    Article  CAS  Google Scholar 

  13. Arbag, H., Appl. Catal. A: Int. J. Hydrogen Energy, 2018, vol. 43, pp. 6561–6574. https://doi.org/10.1016/j.ijhydene.2018.02.063

    Article  CAS  Google Scholar 

  14. Patent RU 2630112, Publ. 2017.

  15. Komlev, A.A. and Gusarov, V.V., Russ. J. Gen. Chem., 2011, vol. 81, no. 11, pp. 2222–2230. https://doi.org/10.1134/S1070363211110028 

    Article  CAS  Google Scholar 

  16. Xu, Z.P. and Lu, G.Q., Chem. Mater., 2005, vol. 17, pp. 1055–1062. https://doi.org/10.1021/cm048085g

    Article  CAS  Google Scholar 

  17. Karagedov, G.R., Chem Sustain. Develop., 2020, no. 1, pp. 8–15. https://doi.org/10.15372/CSD2020196 

    Article  Google Scholar 

  18. Williams, G.R., Moorhouse, S.J., Timothy, J.P., Fogg, A.M., Rees, N.H., and O’Hare, D.A., Dalton Trans., 2011, vol. 40, pp. 6012–6022. https://doi.org/10.1039/c0dt01790f

    Article  CAS  PubMed  Google Scholar 

  19. Fogg, A.M., Williams, G.R., Chester, R., and O’Hare, D.A., J. Mater. Chem., 2004, vol. 14, pp. 2369–2371. https://doi.org/10.1039/B409027F

    Article  CAS  Google Scholar 

  20. Ingram-Jones, V.J., Davies, R.C.T., Southern, J.C., and Salvador, S., J. Mater. Chem., 1996, vol. 6, no. 1, pp. 73–79. https://doi.org/10.1039/JM9960600073

    Article  CAS  Google Scholar 

  21. Buyanov, R.A., Krivoruchko, O.P., and Zolotovskii, B.P., Izv. Sib. Otdel. Akad. Nauk SSSR, 1986, no. 11, issue 4, pp. 39–44.

    Google Scholar 

  22. Tanashev, Yu.Yu., Moroz, E.M., Isupova, L.A., Ivanova, A.S., Litvak, G.S., Amosov, Yu.I., Rudina, N.A., Shmako, A.N., Stepanov, A.G., Kharina, I.V., Kul’ko, E.V., Danilevich, V.V., Balashov, V.A., Kruglyakov, V.Yu., Zolotarskii, I.A., and Parmon, V.N., Kinet. Catal., 2007, vol. 48, no. 1, pp. 153–161. https://doi.org/10.1134/S002315840701020X 

    Article  CAS  Google Scholar 

  23. Vorobev, Yu.K., Shkrabina, R.A., Moroz, E.M., Fenelonov, V.B., Zagrafskaya, R.V., Kambarova, T.D., and Levitskii, E.A., Kinet. Catal., 1981, vol. 22, no. 6, pp. 1275–1281.

    Google Scholar 

  24. Arapova, M.V., Pavlova, S.N., Larina, T.V., Glazneva, T.S., Rogov, V.A., Krieger, T.A., Sadykov, V.A., Smorygo, O., Parkhomenko, K., and Roger, A.-C., Proc. Energy and Materials Research Conf. (EMRS 2015), Mendes-Vilas, A., Ed., Boca Raton (USA): Brown Walker, 2015, pp. 131–135.

    Google Scholar 

  25. Penkova, A., Bobadilla, L.F., Romero-Sarria, F., Centeno, M.A., and Odriozola, J.A., Appl. Surf. Sci., 2014, vol. 317, pp. 241–251. https://doi.org/10.1016/j.apsusc.2014.08.09

    Article  CAS  Google Scholar 

Download references

Funding

The study was performed within the framework of the government assignment for the Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, project АААА-А21-121011490008-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zhuzhgov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 2, pp. 163–173, January, 2021 https://doi.org/10.31857/S0044461821020043

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuzhgov, A.V., Kruglyakov, V.Y., Suprun, E.A. et al. Synthesis of Highly Dispersed Aluminum Magnesium Oxides from the Product of Centrifugal Thermal Activation of Gibbsite. Russ J Appl Chem 94, 152–161 (2021). https://doi.org/10.1134/S107042722102004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042722102004X

Keywords:

Navigation