Skip to main content
Log in

Photocatalytic Studies of La,Ce Co-Doped ZnO Nanoparticles

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Zinc oxide nanoparticles were co-doped with varying concentrations of lanthanum (La) and cerium (Ce) ions using co-precipitation method. The resulting powders were calcined in a muffle furnace for 1 h at a temperature of 500°C to produce La,Ce-doped ZnO nanoparticles of varying stoichiometry viz. (Zn0.98La0.01Ce0.01O, Zn0.96La0.02Ce0.02O, Zn0.94La0.03Ce0.03O, and Zn0.92La0.04Ce0.04O). This method of co-doping is cost effective and does not require any complex procedure, equipment or inert gases. The synthesized samples were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) to study the size, phases and grain morphology. XRD patterns revealed the hexagonal wurtzite phase of the synthesized samples. The average size of the undoped and La,Ce co-doped ZnO nanoparticles, as calculated from XRD pattern, was found to be 25 nm. Further, the size of co-doped nanoparticles decreased significantly with increasing dopant concentration. Optical properties were studied through UV-Visible spectrophotometry. The photocatalytic activities of undoped and La,Ce co-doped ZnO nanoparticles were examined by observing the decomposition of Rhodamine B dye under UV lamp within 0–80 min. The Rhodamine B (RB) dye solution was efficiently photo-degraded within 35 min when using Zn0.92La0.04Ce0.04O as catalyst, mechanism of which has been thoroughly discussed below. Further, photoluminescence (PL) studies revealed the narrowing of band gap with increase in concentration of dopant ions as indicated by the red shift in the PL emission spectrum of co-doped nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Xu, H., Wang, W., and Zhu, W., J. Phys. Chem., 2006, vol. 110, pp. 13829–13834. https://doi.org/10.1021/jp061934y

    Article  CAS  Google Scholar 

  2. El-Sayed, M.A., Acc. Chem. Res., 2001, vol. 34, pp. 257–264. https://doi.org/10.1021/ar960016n

    Article  CAS  PubMed  Google Scholar 

  3. Abdullah, M., Morimoto, T., and Okuyama, K., Adv. Funct.Mater., 2003, vol. 13, pp. 800–804. https://doi.org/10.1002/adfm.200304330

    Article  CAS  Google Scholar 

  4. Karnan, T., Arul, S., and Kumar, S.S., J. Mol. Struct., 2016, vol. 1125, pp. 358–365. https://doi.org/10.1016/j.molstruc.2016.07.029

    Article  CAS  Google Scholar 

  5. VanDijken, A., Meulenkamp, E.A., Vanmaekelbergh, D., and Meijerink, A., J., Luminesc., 2000, vol. 90, pp. 123–128. https://doi.org/10.1016/S0022-2313(99)00599-2

    Article  CAS  Google Scholar 

  6. Volbers, N., Zhou, H., Knies, C., Pfisterer, D., Sann, J., Hofmann, D.M., and Meyer, B.K., Appl. Phys. A, 2007, vol. 88, pp. 153–155. https://doi.org/10.1007/s00339-007-3960-6

    Article  CAS  Google Scholar 

  7. Rau, U., and Schmidt, M., Thin Solid Films, 2001, vol. 387, pp. 141–146. https://doi.org/10.1016/S0040-6090(00)01737-5

    Article  CAS  Google Scholar 

  8. Soki, T., Hatanaka, Y., and Look, D., Appl. Phys. Lett., 2003, vol. 76, pp. 3257–3259. https://doi.org/10.1063/1.126599

    Article  Google Scholar 

  9. Tang, Z., Wong, G., Yu, P., Kawasaki, M., Ohtomo, A., and Koinuma, H., Appl. Phys. Lett., 1998, vol. 72, pp. 3270–3277. https://doi.org/10.1063/1.121620

  10. Dindar, B. and Icli, S. J. Photochem. Photobiol. A, 2001, vol. 140, pp. 263–268. https://doi.org/10.1016/S1010-6030(01)00414-2

    Article  CAS  Google Scholar 

  11. Hoffmann, M.R., Martin, S.T., Choi, W.Y., and Bahnemann, D.W., Chem. Rev., 1995, vol. 95, pp. 69–96. https://doi.org/10.1021/cr00033a004

    Article  CAS  Google Scholar 

  12. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y., Science, 2001, vol. 293, pp. 269–271. https://doi.org/10.1126/science.1061051

    Article  CAS  PubMed  Google Scholar 

  13. Qiu, R.L., Zhang, D.D., Yueqi, M., Lin, S., Brewer, E., Huang, X.F., et al., J. Hazard.Mater., 2008, vol. 156, pp. 80–85. https://doi.org/10.1016/j.jhazmat.2007.11.114

    Article  CAS  PubMed  Google Scholar 

  14. Kumaran, N.N. and Muraleedharan, K., J.Water.Proc.Eng., 2017, vol. 17, pp. 264–270. https://doi.org/10.1016/j.jwpe.2017.04.014

    Article  Google Scholar 

  15. Nair, M., Luo, Z.H., and Heller, A., Ind. Eng. Chem. Res., 1993, vol. 32, pp. 2318–2323. https://doi.org/10.1021/ie00022a015

    Article  CAS  Google Scholar 

  16. Boer, K.W., Survey of Semiconductor Physics, Van Nostrand Reinhold: New York, 1990, pp. 249.

    Google Scholar 

  17. Linsebigler, A.L., Lu, G.Q., and Yates, Jr.J.T., Chem. Rev., 1995, vol. 95, pp. 735–758. https://doi.org/10.1021/cr00035a013

    Article  CAS  Google Scholar 

  18. Romero, M., Blanco, J., Sanchez, B., Vidal, A., Malato, S., Cardona, A., et. al., Sol. Energy, 1999, vol. 66, pp. 169–182. https://doi.org/10.1016/S0038-092X(98)00120-0

    Article  CAS  Google Scholar 

  19. Guan, K.S. and Yin, Y.S., Mater. Chem. Phys., 2015, vol. 92, no. 19, pp. 16905–16912. https://doi.org/10.1021/acs.jpcc.5b02485

    Article  CAS  Google Scholar 

  20. Iqbal, J., Liu, X., Zhu, H., Wua, Z.B., Zhang, Y., Yu, D., and Yu, R., Acta Mater., 2009, vol. 57, pp. 4790–4796. https://doi.org/10.1016/j.actamat.2009.06.056

    Article  CAS  Google Scholar 

  21. Pascariu, P., Homocianu, M., Cojocaru, C., Samoila, P., Airinei, A., and Suchea, M., Appl. Surf. Sci., 2019, vol. 476, pp. 16–27. https://doi.org/10.1016/j.apsusc.2019.01.077

    Article  CAS  Google Scholar 

  22. Romero, M., Blanco, J., Sanchez, B., Vidal, A., Malato, S., Cardona, A.I., et al., Sol. Energy, 1999, vol. 66, pp. 169–182. https://doi.org/10.1016/S0038-092X(98)00120-0

    Article  CAS  Google Scholar 

  23. Guan, K.S. and Yin, Y.S., Mater Chem. Phys., 2005, vol. 92, pp. 10–15. https://doi.org/10.1016/j.matchemphys.2004.01.044

    Article  CAS  Google Scholar 

  24. Wanger, C.D., Riggs, W.M., Davis, L.E., and Moulder, F.J., Handbook of XPS, Eden Prairie MN: Perkin Elmer Corporation., 1979. https://doi.org/10.1002/sia.740030412

    Google Scholar 

  25. Arguello, C.A., Rousseau, D.L., and Porto, S.P.S., Phys. Rev., 1969, vol. 181, pp. 1351–1363. https://doi.org/10.1103/PhysRev.181.1351

    Article  CAS  Google Scholar 

  26. Zhang, W.F., Zhang, M.S., Yin, Z., and Chen, Q., Appl. Phys. B, 2000, vol. 70, pp. 261–265. https://doi.org/10.1007/s003400050043

    Article  CAS  Google Scholar 

  27. Khatamian, M., Khandar, A.A., Divband, B., Haghighi, M., and Ebrahimiasl, S., J. Mol. Catal. A. Chem., 2012, vol. 365, pp. 120–127. https://doi.org/10.1016/j.molcata.2012.08.018

    Article  CAS  Google Scholar 

  28. Sin, J.C., Lam, S.M., Lee, K.T., and Mohamed, A.R., J. Colloid Interf. Sci., 2013, vol. 401, pp. 40–49. https://doi.org/10.1016/j.jcis.2013.03.043

    Article  CAS  Google Scholar 

  29. Rahman, A. and Jayaganthan, R., Trans. Indian Inst. Met., 2016, vol. 70, pp. 1063–1074. https://doi.org/10.1007/s12666-016-0897-5

    Article  CAS  Google Scholar 

  30. Li, X.Z., Li, F.B., Yang, C.L., and Ge, W.K., J. Photochem. Photobiol. A, 2001, vol. 141, pp. 209–217. https://doi.org/10.1016/S1010-6030(01)00446-4

    Article  CAS  Google Scholar 

  31. Jing, L.Q., Sun, X.J., Cai, W.M., Xu, Z.L., Du, Y.G., and Fu, H.G., J. Phys. Chem. Solid., 2003, vol. 64, pp. 615–623. https://doi.org/10.1016/S0022-3697(02)00362-1

    Article  CAS  Google Scholar 

  32. Yamashita, H., Ichihashi, Y., Zhang, S.G., Matsumurab, Y., Soumab, Y., Tatsumic, T., et.al., Appl. Surf. Sci.,1997, vol. 121, pp. 305–311. https://doi.org/10.1016/S0169-4332(97)00311-5

    Article  Google Scholar 

  33. Zou, D., Yan, D., Xiao, L., and Dong, Y., Surf. Coat. Technol., 2008, vol. 202, pp. 1928–1934. https://doi.org/10.1016/j.surfcoat.2007.08.022

    Article  CAS  Google Scholar 

  34. Elilarassi, R. and Chandrasekaran, G., J. Mater. Sci. Mater. Electron, 2010, vol. 21, pp. 1168–1173. https://doi.org/10.1007/s10854-009-0041-y

    Article  CAS  Google Scholar 

  35. Yayapao, O., Thongtem, T., Phuruangrat, A., and Thongtem, S., J. Alloy. Compnd., 2013, vol. 576, pp. 72–79. https://doi.org/10.1016/j.jallcom.2013.04.133

    Article  CAS  Google Scholar 

  36. Anbuvannan, M., Ramesh, M., Viruthagiri, S.N., and Kannadasan, N., Mater. Sci. Semicond. Process,2015, vol. 39, pp. 621–628. https://doi.org/10.1016/j.mssp.2015.06.005

    Article  CAS  Google Scholar 

  37. Zhang, W.F., Zhang, M.S., Yin, Z., and Chen, Q., Appl. Phys., 2000, vol. 70, pp. 261–265. https://doi.org/10.1007/s003400050043

    Article  CAS  Google Scholar 

  38. Zeng, J.H., Yu, Y.L., Wang, Y.F., and Lou, T., J. Acta.Mater., 2009, vol. 57, pp. 1813–1820. https://doi.org/10.1016/j.actamat.2008.12.021

    Article  CAS  Google Scholar 

  39. Iqbal, J., Wang, B., Liu, X.F., Yu, D.P., He, B., and Yu, R.H., New. J. Phys., 2009, vol. 11, pp. 63009–63014. https://doi.org/10.1088/1367-2630/11/6/063009

    Article  CAS  Google Scholar 

  40. Majid, A. and Ali, A., J. Phys. D. Appl. Phys., 2009, vol. 42, pp. 45412–45416. https://doi.org/10.1088/0022-3727/42/4/045412

    Article  CAS  Google Scholar 

  41. Bhatia, S. and Verma, N., Mater. Res. Bull, 2017, vol. 95, pp. 468–476. https://doi.org/10.1016/j.materresbull.2017.08.019

    Article  CAS  Google Scholar 

  42. Berggren, K.F. and Sernelius, B.E., Phys. Rev., 1971, vol. 24, pp. 1971–1986. https://doi.org/10.1103/PhysRevB.24.1971

    Article  Google Scholar 

  43. George, A., Sharma, S.K., Chawla, S., Malik, M.M., and Qureshi, M.S., J. Alloys Compd., 2011, vol. 509, pp. 5942–5946. https://doi.org/10.1016/j.jallcom.2011.03.017

    Article  CAS  Google Scholar 

  44. Wang, S., Bai, L., and Ao, X., RSC Adv., 2018, vol. 8, pp. 36745–36753. https://doi.org/10.1039/C8RA06778C

    Article  CAS  Google Scholar 

  45. Chang, C.J., Lin, C.Y., and Hsu, M.H., J. Taiwan. Inst.Chem. Eng., 2014, vol. 45, pp. 1954–1963. https://doi.org/10.1016/j.jtice.2014.03.008

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atikur Rahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irtiqa, S., Rahman, A. Photocatalytic Studies of La,Ce Co-Doped ZnO Nanoparticles. Russ J Appl Chem 93, 1906–1919 (2020). https://doi.org/10.1134/S1070427220120137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220120137

Keywords:

Navigation