Skip to main content
Log in

Hydrogen Storage Using Liquid Organic Carriers

  • Reviews
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Published data on experimental and theoretical studies of systems for long-term storage and transportation of hydrogen, based on liquid organic hydrogen carriers operating in hydrogenation–dehydrogenation cycles, are reviewed. Comparative analysis of the hydrogen capacity and hydrogenation–dehydrogenation conditions was made for various classes of organic compounds used as hydrogen carriers (cycloalkanes, polycyclic alkanes, hydrocarbons containing heteroatoms, etc.). The catalysts (heterogeneous catalysts based on noble metals) and designs of reactors (including those with proton-exchange membranes) used for efficient and selective dehydrogenation of organic hydrogen carriers were also compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme

Similar content being viewed by others

Notes

  1. https://www.persistencemarketresearch.com/market-research/hydrogen-market.asp

  2. http://ieahydrogen.org/Activities/Task-32.aspx

  3. ISO 14687:2019 Hydrogen fuel quality—Product specification. https://www.iso.org/ru/standard/69539.html

  4. https://www.shokubai.org/tocat8/pdf/Plenary/PL9.pdf

  5. https://www.energy.gov/eere/fuelcells/downloads/technical-assessment-organic-liquid-carrier-hydrogen-storage-systems

REFERENCES

  1. Staffell, I., Scamman, D., Abad, A.V., Balcombe, P., Dodds, P.E., Ekins, P., Shan, N., and Ward, K.R., Energy Environ. Sci., 2019, vol. 12, pp. 463–491. https://doi.org/10.1039/c8ee01157e

    Article  CAS  Google Scholar 

  2. Mazloomi, K. and Gomes, C., Renew. Sustain. Energy Rev., 2012, vol. 16, no. 5, pp. 3024–3033. https://doi.org/10.1016/j.rser.2012.02.028

    Article  CAS  Google Scholar 

  3. Preuster, P., Papp, C., and Wasserscheid, P., Acc. Chem. Res., 2017, vol. 50, pp. 74–85. https://doi.org/10.1021/acs.accounts.6b00474

    Article  CAS  PubMed  Google Scholar 

  4. Makepeace, J.W., He, T., Weidenthaler, C., Jensen, T.R., Chang, F., Vegge, T., Ngene, P., Kojima, Y., de Jongh, P.E., Ping Chen, P., and David, W.I.F., Int. J. Hydrogen Energy, 2019, vol. 44, no. 15, pp. 7746–7767. https://doi.org/10.1016/j.ijhydene.2019.01.144

    Article  CAS  Google Scholar 

  5. Aakko-Saksa, P.T., Cook, C., Kiviaho, J., and Repo, T., J. Power Sources, 2018, vol. 396, pp. 803–823. https://doi.org/10.1016/j.jpowsour.2018.04.011

    Article  CAS  Google Scholar 

  6. Mizuno, Y., Ishimoto, Y., Sakai, S., and Sakata, K., J. Jpn. Soc. Energy Resources, 2016, vol. 38, no. 3, pp. 11–17. https://doi.org/10.24778/jjser.38.3_11

    Article  Google Scholar 

  7. Aziz, M., Oda, T., and Kashiwagi, T., Energy Procedia, 2019, vol. 158, pp. 4086–4091. https://doi.org/10.1016/j.egypro.2019.01.827

    Article  CAS  Google Scholar 

  8. Muller, K., ChemBioEng, 2019, vol. 6, no. 3, pp. 72–80. https://doi.org/10.1002/cben.201900009

    Article  CAS  Google Scholar 

  9. Nafchi, F.M., Baniasadi, E., Afshari, E., and Javani, N., Int. J. Hydrogen Energy, 2018, vol. 43, no. 11, pp. 5820–5831. https://doi.org/10.1016/j.ijhydene.2017.09.058

    Article  CAS  Google Scholar 

  10. Kikuchi, Y., Ichikawa, T., Sugiyama, M., and Koyama, M., Int. J. Hydrogen Energy, 2019, vol. 44, no. 3, pp. 1451–1465. https://doi.org/10.1016/j.ijhydene.2018.11.119

    Article  CAS  Google Scholar 

  11. Fateev, V.N., Alekseeva, O.K., Korobtsov, S.V., Seregina, E.A., Fateeva, E.V., Grigor’ev, A.S., and Aliev, A.Sh., Chem. Probl., 2018, vol. 16, no. 4, pp. 453–483. https://doi.org/10.32737/2221-8688-2018-4-453-483

    Article  Google Scholar 

  12. Yanxing, Z., Maoqiong, G., Yuan, Z., Xueqiang, D., and Jun, S., Int. J. Hydrogen Energy, 2019, vol. 44, no. 31, pp. 16833–16840. https://doi.org/10.1016/j.ijhydene.2019.04.207

    Article  CAS  Google Scholar 

  13. Tarasov, B.P., Fursikov, P.V., Volodin, A.A., Bocharnikov, M.S., Shimkus, Yu.Ya, Kashin, A.M., Yartys, V.A., Chidziva, S., Pasupathi, S., and Lototskyy, M.V., Int. J. Hydrogen Energy, 2020. https://doi.org/10.1016/j.ijhydene.2020.07.085

  14. Rivard, E., Trudeau, M., and Zaghi, K., Materials, 2019, vol. 12, ID 1973. https://doi.org/10.3390/ma12121973

    Article  CAS  PubMed Central  Google Scholar 

  15. Andersson, J. and Gronkvist, S., Int. J. Hydrogen Energy, 2019, vol. 44, pp. 11901–11919. https://doi.org/10.1016/j.ijhydene.2019.03.063

    Article  CAS  Google Scholar 

  16. Kustov, L.M., Kalenchuk, A.N., and Bogdan, V.I., Russ. Chem. Rev., 2020, vol. 89, no. 9, pp. 897–916. https://doi.org/10.1070/RCR4940 

    Article  Google Scholar 

  17. Mehranfar, A., Izadyar, M., and Esmaeili, A.A., Int. J. Hydrogen Energy, 2015, vol. 40, no. 17, pp. 5797–5806. https://doi.org/10.1016/j.ijhydene.2015.03.011

    Article  CAS  Google Scholar 

  18. Dong, Y., Yang, M., Yang, Z., Ke, H., and Cheng, H., Int. J. Hydrogen Energy, 2015, vol. 40, no. 34, pp. 10918–10922. https://doi.org/10.1016/j.ijhydene.2015.05.196

    Article  CAS  Google Scholar 

  19. Brayton, D.F. and Jensen, C.M., Int. J. Hydrogen Energy, 2015, vol. 40, no. 46, pp. 16266–16270. https://doi.org/10.1016/j.ijhydene.2015.10.014

    Article  CAS  Google Scholar 

  20. Markiewicz, M., Zhang, Y.Q., Boesmann, A., Brueckner, N., Thoeming, J., Wasserscheid, P., and Stolte, S., Energy Environ Sci., 2015, vol. 8, no. 3, pp. 1035–1045. https://doi.org/10.1039/C4EE03528C

    Article  CAS  Google Scholar 

  21. Stark, K., Keil, P., Schug, S., Mueller, K., Wasserscheid, P., and Arlt, W., J. Chem. Eng. Data, 2016, vol. 61, no. 4, pp. 1441–1448. https://doi.org/10.1021/acs.jced.5b00679

    Article  CAS  Google Scholar 

  22. Aslam, R., Mueller, K., Mueller, M., Koch, M., Wasserscheid, P., and Arlt, W., J. Chem. Eng. Data, 2016, vol. 61, no. 1, pp. 643–649. https://doi.org/10.1021/acs.jced.5b00789

    Article  CAS  Google Scholar 

  23. Geburtig, D., Preuster, P., Boesmann, A., Mueller, K., and Wasserscheid, P., Int. J. Hydrogen Energy, 2016, vol. 1, no. 2, pp. 1010–1017. https://doi.org/10.1016/j.ijhydene.2015.10.013

    Article  CAS  Google Scholar 

  24. Choi, I.Y., Shin, B.S., Kang, J.W., Kwak, S.K., Kang, K.S., and Yoon, C.W., Int. J. Hydrogen Energy, 2016, vol. 41, no. 22, pp. 9367–9373. https://doi.org/10.1016/j.ijhydene.2016.04.118

    Article  CAS  Google Scholar 

  25. Wijayanta, A.T., Oda, T., Purnomo, C.W., Kashiwagi, T., and Aziz, M., Int. J. Hydrogen Energy, 2019, vol. 44, no. 29, pp. 15026–15044. https://doi.org/10.1016/j.ijhydene.2019.04.112

    Article  CAS  Google Scholar 

  26. Modisha, P.M., Ouma, C.N.M., Garidzirai, R., Wasserscheid, P., and Bessarabov, D., Energy Fuels, 2019, vol. 33, no. 4, pp. 2778–2796. https://doi.org/10.1021/acs.energyfuels.9b00296

    Article  CAS  Google Scholar 

  27. Stark, K., Emel’yanenko, V.N., Zhabina, A.A., Varfolomeev, M.A., Verevkin, S.P., Muller, K., and Arlt, W., Ind. Eng. Chem. Res., 2015, vol. 54, pp. 7953–7966. https://doi.org/10.1021/acs.iecr.5b01841

    Article  CAS  Google Scholar 

  28. Muller, K., Stark, K., Emel’yanenko, V.N., Varfolomeev, M.A., Zaitsau, D.H., Shoifet, E., Schick, C., Verevkin, S.P., and Arlt, W., Ind. Eng. Chem. Res., 2015, vol. 54, pp. 7967–7976. https://doi.org/10.1021/acs.iecr.5b01840

    Article  CAS  Google Scholar 

  29. Muller, K., Aslam, R., Fische, A., Stark, K., Wasserscheid, P., and Arlt, W., Int. J. Hydrogen Energy, 2016, vol. 41, pp. 22097–22103. https://doi.org/10.1016/j.ijhydene.2016.09.196

    Article  CAS  Google Scholar 

  30. Muller, K., Volkl, J., and Arlt, W., Energy Technol., 2013, vol. 1, pp. 20–24. https://doi.org/10.1002/ente.201200045

    Article  Google Scholar 

  31. Teichmann, D., Stark, K., Muller, K., Zittl, G., Wasserscheid, P., and Arlt, W., Energy Environ. Sci., 2012, vol. 5, no. 10, ID 9044. https://doi.org/10.1039/c2ee22070a

    Article  CAS  Google Scholar 

  32. Niermann, M., Drunert, S., Kaltschmitt, M., and Bonhoff, K., Energy Environ. Sci., 2019, vol. 12, pp. 290–307. https://doi.org/10.1039/c8ee02700e

    Article  CAS  Google Scholar 

  33. Aardahl, C.L. and Rassat, S.D., Int. J. Hydrogen Energy, 2009, vol. 34, no. 16, pp. 6676–6683. https://doi.org/10.1016/j.ijhydene.2009.06.009

    Article  CAS  Google Scholar 

  34. Durbin, D.J., Malardier-Jugroot, C., Int. J. Hydrogen Energy, 2013, vol. 38, no. 34, pp. 14595–14617. https://doi.org/10.1016/j.ijhydene.2013.07.058

    Article  CAS  Google Scholar 

  35. Teichmann, D., Arlt, W., and Wasserscheid, P., Int. J. Hydrogen Energy, 2012, vol. 37, no. 23, pp. 18118–18132. https://doi.org/10.1016/j.ijhydene.2012.08.066

    Article  CAS  Google Scholar 

  36. Niaz, S., Manzoor, T., and Pandith, A.H., Renew. Sustain. Energy Rev., 2015, vol. 50, pp. 457–469. https://doi.org/10.1016/j.rser.2015.05.011

    Article  CAS  Google Scholar 

  37. Reub, M., Grube, T., Robinius, M., Preuster, P., Wasserscheid, P., and Stolten, D., Appl. Energy, 2017, vol. 200, pp. 290–302. https://doi.org/10.1016/j.apenergy.2017.05.050

    Article  CAS  Google Scholar 

  38. Lang, C., Jia, Yi., and Yao, X., Energy Stor. Mater., 2020, vol. 26, pp. 290–312. https://doi.org/10.1016/j.ensm.2020.01.010

    Article  Google Scholar 

  39. He, T., Pachfule, P., Wu, H., Xu, Q., and Chen, P., Nat. Rev. Mater., 2016, vol. 1, no. 12, ID 16059. https://doi.org/10.1038/natrevmats.2016.59

    Article  CAS  Google Scholar 

  40. Mueller, K., Stark, K., Mueller, B., and Arlt, W., Energy Fuels, 2012, vol. 26, no. 6, pp. 3691–3696. https://doi.org/10.1021/ef300516m

    Article  CAS  Google Scholar 

  41. Alhumaidan, F., Cresswell, D., and Garforth, A., Energy Fuels, 2011, vol. 25, no. 10, pp. 4217–4234. https://doi.org/10.1021/ef200829x

    Article  CAS  Google Scholar 

  42. Wang, H., Zhou, X., and Ouyang, M., Int. J. Hydrogen Energy, 2016, vol. 41, pp. 18062–18071. https://doi.org/10.1016/j.ijhydene.2016.08.003

    Article  CAS  Google Scholar 

  43. Sotoodeh, F. and Smith, K.J., J. Catal., 2011, vol. 279, pp. 36–47. https://doi.org/10.1016/j.jcat.2010.12.022

    Article  CAS  Google Scholar 

  44. Amende, M., Schernich, S., Sobota, M., Nikiforidis, I., Hieringer, W., Assenbaum, D., Gleichweit, C., Drescher, H.-J., Papp, C., Steinrück, H.-P., Görling, A., Wasserscheid, P., Laurin, M., and Libuda, J., Chem. Eur. J., 2013, vol. 19, pp. 10854–10865. https://doi.org/10.1002/chem.201301323

    Article  CAS  PubMed  Google Scholar 

  45. Shi, L., Qi, S., Qu, J., Che, T., Yi, C., and Yang, B., Int. J. Hydrogen Energy, 2019, vol. 44, pp. 5345–5354. https://doi.org/10.1016/j.ijhydene.2018.09.083

    Article  CAS  Google Scholar 

  46. Wijayanta, A.T., Oda, T., Purnomo, C.W., Kashiwagi, T., and Aziz, M., Int. J. Hydrogen Energy, 2019, vol. 44, pp. 15026–15044. https://doi.org/10.1016/j.ijhydene.2019.04.112

    Article  CAS  Google Scholar 

  47. Li, L., Yang, M., Dong, Y., Mei, P., and Cheng, H., Int. J. Hydrogen Energy, 2016, vol. 41, no. 36, pp. 16129–16134. https://doi.org/10.1016/j.ijhydene.2016.04.240

    Article  CAS  Google Scholar 

  48. Dong, Yu., Yang, M., Li, L., Zhu, T., Chen, X., and Cheng, H., Int. J. Hydrogen Energy, 2019, vol. 44, no. 10, pp. 4919–4929. https://doi.org/10.1016/j.ijhydene.2019.01.015

    Article  CAS  Google Scholar 

  49. Dong, Yu., Yang, M., Yang, Z., and Ke, H., Int. J. Hydrogen Energy, 2015, vol. 40, no. 34, pp. 10918–10922. https://doi.org/10.1016/j.ijhydene.2015.05.196

    Article  CAS  Google Scholar 

  50. Emel’yanenko, V.N., Zaitsau, D.H., Pimerzin, A.A., and Verevkin, S.P., J. Chem. Thermodyn., 2019, vol. 132, pp. 122–128. https://doi.org/10.1016/j.jct.2018.12.032

    Article  CAS  Google Scholar 

  51. Verevkin, S.P., Siewer, R., and Pimerzin, A.A., Fuel, 2020, vol. 266, ID 117067. https://doi.org/10.1016/j.fuel.2020.117067]

    Article  CAS  Google Scholar 

  52. Verevkin, S.P., Pimerzin, A.A., and Sun, L.-X., J. Chem. Thermodyn., 2020, vol. 144, ID 106057. https://doi.org/10.1016/j.jct.2020.106057

    Article  CAS  Google Scholar 

  53. Jorshick, H., Vogl, M., Preuster, P., Bosmann, A., and Wassersheid, P., Int. J. Hydrogen Energy, 2019, vol. 44, no. 59, pp. 31173–31182. https://doi.org/10.1016/j.ijhydene.2019.10.018

    Article  CAS  Google Scholar 

  54. Bulgarin, A., Jorschick, H., Preuster, P., Bösman, A., and Wasserscheid, P., Int. J. Hydrogen Energy, 2020, vol. 45, no. 1, pp. 712–720. https://doi.org/10.1016/j.ijhydene.2019.10.067

    Article  CAS  Google Scholar 

  55. Yadav, M. and Xu, Q., Energy Environ. Sci., 2012, vol. 5, pp. 9698–9725. https://doi.org/10.1039/c2ee22937d

    Article  CAS  Google Scholar 

  56. Wang, X., Meng, Q., Gao, L., Jin, Z., Ge, J., Liu, C., and Xing, W., Int. J. Hydrogen Energy, 2018, vol. 43, pp. 7055–7071. https://doi.org/10.1016/j.ijhydene.2018.02.146

    Article  CAS  Google Scholar 

  57. Hu, P., Fogler, E., Diskin-Posner, Y., Iron, M.A., and Milstein, D., Nat. Commun., 2015, vol. 6, ID 6859. https://doi.org/10.1038/ncomms7859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Aakko-Saksa, P.T., Vehkamaki, M., Kemell, M., Keskivali, L., Simell, P., Reinikainen, M., Tapper, U., and Repo, T., Chem. Commun., 2020, vol. 56, pp. 1657–1660. https://doi.org/10.1039/c9cc09715e

    Article  CAS  Google Scholar 

  59. Hamayun, M.H., Maafa, I.M., Hussain, M., and Aslam, R., Energies, 2020, vol. 13, ID 206. https://doi.org/10.3390/en13010206

    Article  CAS  Google Scholar 

  60. Cromwell, D.K., Vasudevan, P.T., Pawelec, B., and Fierro, J.L.G., Catal. Today, 2016, vol. 259, pp. 119–129. https://doi.org/10.1016/j.cattod.2015.05.030

    Article  CAS  Google Scholar 

  61. Manabe, S., Yabe, T., Nakano, A., Nagatake, S., Higo, T., Ogo, S., Nakai, H., and Sekine, Y., Chem. Phys. Lett., 2018, vol. 711, pp. 73–76. https://doi.org/10.1016/j.cplett.2018.09.026

    Article  CAS  Google Scholar 

  62. Yan, J., Wang, W., Miao, L., Wu, K., Chen, G., Huang, Y., and Yang, Y., Int. J. Hydrogen Energy, 2018, vol. 43, no. 19, pp. 9343–9352. https://doi.org/10.1016/j.ijhydene.2018.04.003

    Article  CAS  Google Scholar 

  63. Ombaka, L.M., Ndungu, P., and Nyamor, V.O., Catal. Today, 2013, vol. 217, pp. 65–75. https://doi.org/10.1016/j.cattod.2013.05.014

    Article  CAS  Google Scholar 

  64. Patil, S.P., Pande, J.V., and Biniwale, R.B., Int. J. Hydrogen Energy, 2013, vol. 38, no. 35, pp. 15233–15241. https://doi.org/10.1016/j.ijhydene.2013.09.115

    Article  CAS  Google Scholar 

  65. Usman, M.R., Proc. Pak. Acad. Sci., 2011, vol. 48, pp. 13–17.

    CAS  Google Scholar 

  66. Usman, M.R. and Cresswell, D.L., Chem. Eng. Res. Des., 2015, vol. 104, pp. 125–138. https://doi.org/10.1016/j.cherd.2015.07.026

    Article  CAS  Google Scholar 

  67. Usman, M.R., Aslam, R., and Alotaibi, F., Energy Source, Part A, 2011, vol. 33, pp. 2264–2271. https://doi.org/10.1080/15567036.2011.585388

    Article  CAS  Google Scholar 

  68. Jothimurugesan, K., Bhatia, S., and Srivastava, R.D., Ind. Eng. Chem. Fundam., 1985, vol. 24, pp. 433–438. https://doi.org/10.1021/i100020a006

    Article  CAS  Google Scholar 

  69. Usman, M.R., Alotaibi, F.M., and Aslam, R., Prog. React. Kinet. Mech., 2015, vol. 40, pp. 353–366. https://doi.org/10.3184/146867815X14413752286029

    Article  CAS  Google Scholar 

  70. Wang, W., Miao, L., Wu, K., Chen, G., Huang, Y., and Yang, Y., Int. J. Hydrogen Energy, 2019, vol. 44, no. 5, pp. 2918–2925. https://doi.org/10.1016/j.ijhydene.2018.12.072

    Article  CAS  Google Scholar 

  71. Kalenchuk, A.N., Bogdan, V.I., Dunaev, S.F., and Kustov, L.M., Fuel Process. Technol., 2018, vol. 169, pp. 94–100. http:// https://doi.org/10.1016/j.fuproc.2017.09.023

    Article  CAS  Google Scholar 

  72. Sung, J.S., Choo, K.Y., Kim, T.H., Tarasov, A.L., Tkachenko, O.P., and Kustov, L.M., Int. J. Hydrogen Energy, , vol. 33, pp. 2721–2728. https://doi.org/10.1016/j.ijhydene.2008.03.03

    Article  Google Scholar 

  73. Jiang, Z., Gong, X., Wang, B., Wu, Z., and Fang, T., Int. J. Hydrogen Energy, 2019, vol. 44, no. 5, pp. 2951–2959. https://doi.org/10.1016/j.ijhydene.2018.11.236

    Article  CAS  Google Scholar 

  74. Zhu, T., Yang, M., Chen, X., Dong, Yu., Zhang, Z., and Cheng, H., J. Catal., 2019, vol. 378, pp. 382–391. https://doi.org/10.1016/j.jcat.2019.08.032

    Article  CAS  Google Scholar 

  75. Xie, Y., Hu, P., Ben-David, Y., and Milstein, D., Angew. Chem. Int. Ed., 2019, vol. 58, no. 15, pp. 5105–5109. https://doi.org/10.1002/anie.201901695

    Article  CAS  Google Scholar 

  76. Bernskoetter, W.H. and Hazari, N., Hydrogenation and dehydrogenation reactions catalyzed by iron pincer compounds, Pincer Compounds, 2018, pp. 111–131. https://doi.org/10.1016/B978-0-12-812931-9.000062

    Article  Google Scholar 

  77. Gorgas, N. and Kirchner, K., Pincer Compounds. Chemistry and Applications, Morales-Morales, D., Ed., Amsterdam: Elsevier, 2018, pp. 382–384.

    Google Scholar 

  78. Auer, F., Blaumeiser, D., Bauer, T., Bösmann, A., Szesni, N., Libuda, J., and Wasserscheid, P., Catal. Sci. Technol., 2019, vol. 9, no. 13, pp. 3537–3547. https://doi.org/10.1039/c9cy00817a

    Article  CAS  Google Scholar 

  79. Dorokhov, V.G., Dorokhova, G.F., and Savchenko, V.I., Russ. Chem. Bull., 2018, vol. 67, no. 8, pp. 1412–1418. https://doi.org/10.1007/s11172-018-2233-1 

    Article  CAS  Google Scholar 

  80. Jorschick, H., Preuster, P., Durr, S., Seidel, A., Muller, K., Bosmann, A., and Wasserscheid, P., Energy Environ. Sci., 2017, vol. 10, pp. 1652–1659. https://doi.org/10.1039/c7ee00476a

    Article  CAS  Google Scholar 

  81. Wunsch, A., Mohr, M., and Pfeifer, P., Membranes, 2018, vol. 8, ID 112. https://doi.org/10.3390/membranes8040112

    Article  CAS  PubMed Central  Google Scholar 

  82. Zhang, D., Zhao, J., Zhang, Yu., and Lu, X., Int. J. Hydrogen Energy, 2016, vol. 41, no. 27, pp. 11675–11681. https://doi.org/10.1016/j.ijhydene.2015.11.173

    Article  CAS  Google Scholar 

  83. Lee, S., Han, G., Kim, T., Yoo, Yo.-S., Jeon, S.-Yu., and Bae, J., Int. J. Hydrogen Energy, 2020, vol. 45, no. 24, pp. 13398–13405. https://doi.org/10.1016/j.ijhydene.2020.02.129

    Article  CAS  Google Scholar 

  84. Didenko, L.P., Sementsova, L.A., Chizhov, P.E., and Dorofeeva, T.V., Petrol. Chem., 2019, vol. 59, no. 4, pp. 394–404. https://doi.org/10.1134/S0965544119040054 

    Article  CAS  Google Scholar 

  85. Eypasch, M., Schimpe, M., Kanwar, A., Hartmann, T., Herzog, S., Frank, T., and Hamacher, T., Appl. Energy, 2017, vol. 185, pp. 320–330. https://doi.org/10.1016/j.apenergy.2016.10.068

    Article  CAS  Google Scholar 

  86. Wulf, C. and Zapp, P., Int. J. Hydrogen Energy, 2018, vol. 43, no. 26, pp. 11884–11895. https://doi.org/10.1016/j.ijhydene.2018.01.198

    Article  CAS  Google Scholar 

Download references

Funding

The study was performed within the Basic Research Program of State Academies of Sciences, theme 0089-2019-0018 for the Institute of Problems of Chemical Physics, Russian Academy of Sciences (state registry no. АААА-А19-119022690098-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Sedov.

Ethics declarations

A.L. Maksimov is the Editor-in-Chief of Zhurnal Prikladnoi Khimii/Russian Journal of Applied Chemistry. The other authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 12, pp. 1716-1733, December, 2020 https://doi.org/10.31857/S0044461820120038

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makaryan, I.A., Sedov, I.V. & Maksimov, A.L. Hydrogen Storage Using Liquid Organic Carriers. Russ J Appl Chem 93, 1815–1830 (2020). https://doi.org/10.1134/S1070427220120034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220120034

Keywords:

Navigation