Skip to main content
Log in

Structural Features of Ni–W Alloy Deposited from Pyrophosphate Electrolyte

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The composition and structure of Ni–W alloys prepapred from pyrophosphate electrolyte have been studied. It was demionstrated that, regardless of the deposition current density in the range 2–5 A dm–2, alloys are a single-phase system and represent a solid solution of tungsten in nickel with a face-centered cubic lattice. At low deposition current densities in the coating there exists an impurity oxygen-containing phase of tungsten compounds of an intermediate oxidation state. It was found that the oxygen-containing impurity is distributed unevenly over the coating thickness. Impurity grains are formed only at the initial moment of deposition of the coating at the interface with the substrate together with nickel nanocrystals, and only after some time does the formation of the alloy phase begin. The data obtained are explained in term of the cluster mechanism of induced coprecipitation of alloys of refractory metals with metals of the iron group, proposed earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Andryushchenko, F.K., Orekhova, V.V., and Pavlovskaya, K.K., Pirofosfatnye elektrolity (Pyrophosphate Electrolytes), Kiev: Tekhnika, 1965.

    Google Scholar 

  2. Purin, B.A., Elektroosazhdenie metallov iz pirofosfatnykh elektrolitov (Electrodeposition of Metals from Pyrophosphate Electrolytes), Riga: Zinatne, 1975.

    Google Scholar 

  3. Elezović, N., Grgur, B.N., Krstajić, N.V., and Jović, V.D., J. Serb. Chem. Soc., 2005, vol. 70, no. 6, pp. 879–889. https://doi.org/10.2298/JSC0506879G

    Article  Google Scholar 

  4. Aleksandrova, G.S. and Varypaev, V.N., Zh. Prikl. Khim., 1981, vol. 54, no. 8, pp. 1849–1851.

    CAS  Google Scholar 

  5. Stasov, A.A. and Pasechnik, S.Ya., Izv. Vuzov. Khimiya Khim. Tekhnologiya, 1973, vol. 16, no. 4, pp. 600–603.

    CAS  Google Scholar 

  6. Tsyntsaru, N., Cesiulis, H., Donten, M., Sort, J., Pellicer, E., and Podlaha-Murphy, E.J., Surf. Eng. Appl. Electrochem., 2012, vol. 48, no. 6, pp. 491–520. https://doi.org/10.3103/S1068375512060038

    Article  Google Scholar 

  7. Stepanova, L.I., Bodrykh, T.I., Purovskaya, O.G., and Sviridova, T.V., Nanotekhnika, 2005, no. 2, pp. 54–59.

    Google Scholar 

  8. Purovskaya, O.G., Stepanova, L.I., Ivashkevich, L.S., and Sviridov, V.V., Gal’vanotekhnika i obrab. pov-ti, 1977, no. 1, pp. 24–31.

    Google Scholar 

  9. Ved, M., Sakhnenko, N., Yermolenko, I., Yar-Mukhamedova, G., and Atchibayev, R., Eurasian Shem. Tech. J., 2018, vol. 20, pp. 145–152. https://doi.org/10.18321/ectj697

    Article  CAS  Google Scholar 

  10. Krasikov, A.V. and Krasikov, V.L., Izv. SPbGTI (TU), 2016, no. 36, pp. 12–23. https://doi.org/10.15217/issn1998984-9.2016.36.12

    Article  Google Scholar 

  11. Amadeh, A., Harsijsani, M., and Mouradi, H., Int. J. ISSI, 2009, vol. 6, no. 2, pp. 14–19.

    Google Scholar 

  12. Vas’ko, A.V., Elektrokhimiya molibdena i vol’frama (Electrochemistry of Molybdenum and Wolfram), Kiev: Nauk. Dumka, 1977.

    Google Scholar 

  13. McEvoy, T.M. and Stevenson, K.J., J. Mater. Res., 2004, vol. 19, no. 2, pp. 429–438. https://doi.org/10.1557/jmr.2004.19.2.429

    Article  CAS  Google Scholar 

  14. Krasikov, A.V., Krasikov, V.L., and Naraev, V.N., Izv. SPbGTI (TU), 2012, no. 14 (41), pp. 37–40.

    Google Scholar 

  15. Kondrachova, L., Hahn, B.P., Vijayaraghavan, G., Williams, R.D., and Stevenson, K., Langmuir, 2006, vol. 22, no. 25, pp. 10490–10498. https://doi.org/10.1021/la061299n

    Article  CAS  PubMed  Google Scholar 

  16. Krasikov, V. and Krasikov, A., Izv. SPbGTI (TU), 2016, no. 37, pp. 8–14. https://doi.org/10.15217/issn1998984-9.2016.37.8

  17. Sebastian, P., Giannotti, M.I., Gómez, E., and Feliu, J.M., ACS Appl. Energy Mater., 2018, vol. 1, no. 3, pp. 1016–1028. https://doi.org/10.1021/acsaem.7b00177

    Article  CAS  Google Scholar 

  18. Insoo, Kim, SaeGwang, Lee, Textures Microstruct., 2000, vol. 34(2–3), pp. 159–169. https://doi.org/10.1155/TSM.34.159

    Article  Google Scholar 

  19. Grujicic, D. and Pesic, B., Electrochim. Acta, 2005, vol. 51(13), pp. 2678–2690. https://doi.org/10.1016/j.electacta.2005.08.017

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Krasikov.

Ethics declarations

The authors declare that they have no conflicts of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasikov, A.V., Krasikov, V.L. & Markov, M.A. Structural Features of Ni–W Alloy Deposited from Pyrophosphate Electrolyte. Russ J Appl Chem 93, 1688–1695 (2020). https://doi.org/10.1134/S1070427220110099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220110099

Keywords:

Navigation