Skip to main content
Log in

Synthesis of Monomers for Promising Membrane Materials, Polyalkylenesiloxanes

  • Organic Synthesis and Industrial Organic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Synthesis of monomers is the key and most labor-consuming step in the development of highly selective membrane materials. Polyalkylenesiloxanes show promise for separation of vapors of organic components from gas mixtures. The paper considers two approaches to the synthesis of 1,1,3,3,5,5-hexamethyl-2-oxa-1,3,5-trisilacyclohexane, a monomer for preparing poly-bis(dimethylsilmethylene)dimethylsiloxane, a promising polymer material for gas-separation and pervaporation membranes. Modified synthesis procedures using both approaches, closure of the six-membered ring via formation of the Si–O–Si or Si–C bond, are suggested. Comparative analysis shows that, among organomagnesium cyclization methods, the one-step method in a diethyl ether or diethyl glycol dibutyl ether should be preferred. The suggested procedure allows reaching the monomer yield as high as 75–80% and more.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Scheme 3.
Scheme 4.

Similar content being viewed by others

REFERENCES

  1. Apel, P.Yu., Bobreshova, O.V., Volkov, A.V., Volkov, V.V., Nikonenko, V.V., Stenina, I.A., Filippov, A.N., Yampolskii, Yu.P., and Yaroslavtsev, A.B., Membr. Membr. Technol., 2019, vol. 1, no. 2, pp. 45–63. https://doi.org/10.1134/S2517751619020021 

    Article  CAS  Google Scholar 

  2. Akhmetshina, A.I., Yanbikov, N.R., Atlaskin, A.A., Trubyanov, M.M., Mechergui, A., Otvagina, K.V., Razov, E.N., Mochalova, A.E., and Vorotyntsev, I.V., Membranes, 2019, vol. 9, no. 1, p. 9. https://doi.org/10.3390/membranes9010009

    Article  CAS  PubMed Central  Google Scholar 

  3. Borisov, I., Bakhtin, D., Luque-Alled, J.M., Rybakova, A., Makarova, V., Foster, A.B., Harrison, W.J., Volkov, V., Polevaya, V., Gorgojo, P., Prestat, E.M., Budd, P., and Volkov, A., J. Mater. Chem. A, 2019, vol. 7, pp. 6417–6430. https://doi.org/10.1039/C8TA10691F

    Article  CAS  Google Scholar 

  4. Storozhuk, I.P., Pavlukovich, N.G., Korobkina, A.V., and Kagramanov, G.G., Membr. Membr. Technol., 2020, vol. 2, pp. 71–75. https://doi.org/10.1134/S2517751620020043 

    Article  CAS  Google Scholar 

  5. Rasmussen, S.B., Huang, J., Riisager, A., Hamm, H., Rogez, J., Winnick, J., Wassserscheid, P., and Fehrmann, R., ECS Trans., 2007, vol. 3, no. 35, pp. 49–59. https://doi.org/10.1149/1.2798646

    Article  CAS  Google Scholar 

  6. Lytkina, A.A., Orekhova, N.V., Ermilova, M.M., Yaroslavtsev, A.B., Petriev, I.S., and Baryshev, M.G., Petrol. Chem., 2017, vol. 57, no. 13, pp. 1219–1227. https://doi.org/10.1134/S0965544117130072 

    Article  CAS  Google Scholar 

  7. Aydin, S., Yesil, H., and Tugtas, A.E., Bioresource Technol., 2018, vol. 250, pp. 548–555. https://doi.org/10.1016/j.biortech.2017.11.061

    Article  CAS  Google Scholar 

  8. Grushevenko, E.A., Podtynnikov, I.A., and Borisov, I.L., Russ. J. Appl. Chem., 2019, vol. 92, no. 11, pp. 1593–1601. https://doi.org/10.1134/S1070427219110168 

    Article  CAS  Google Scholar 

  9. Smirnova, N.N., Russ. J. Appl. Chem., 2019, vol. 92, no. 2, pp. 222–227. https://doi.org/10.1134/S1070427219020083 

    Article  CAS  Google Scholar 

  10. Finkelshtein, E.S., Ushakov, N.V., and Gringolts, M.L., Polycarbosilanes based on silicon–carbon cyclic monomers, Silicon Polymers, Berlin: Springer, 2010, pp. 111–159. https://doi.org/10.1007/12_2009_39

    Article  CAS  Google Scholar 

  11. Borisov, I.L., Ushakov, N.V., Volkov, V.V., and Finkel’shtein, E.Sh., Petrol. Chem., 2016, vol. 56, no. 9, pp. 798–804. https://doi.org/10.1134/S0965544116090024 

    Article  CAS  Google Scholar 

  12. Stern, S.A., Shah, V.M., and Hardy, B.J., J. Polym. Sci. Phys., 1987, vol. 25, no. 6, pp. 1263–1298. https://doi.org/10.1002/polb.1987.090250607

    Article  CAS  Google Scholar 

  13. Shah, V.M., Hardy, B.J., and Stern, S.A., J. Polym. Sci. Phys., 1993, vol. 31, no. 3, pp. 313–317. https://doi.org/10.1002/polb.1993.090310309

    Article  CAS  Google Scholar 

  14. Interrante, L.V., Shen, Q., and Li, J., Macromolecules, 2001, vol. 34, pp. 1545–1547. https://doi.org/10.1021/ma001785w

    Article  CAS  Google Scholar 

  15. Fritz, G. and Grunert, B., Z. Anorg. Allg. Chem., 1976, vol. 419, pp. 249–252. https://doi.org/10.1002/zaac.19764190305

    Article  CAS  Google Scholar 

  16. Borisov, I. L., Ushakov, N. V., Volkov, V. V., and Finkelshtein, E. S., Russ. Chem. Bull., 2016, vol. 65, no. 4, pp. 1020–1022. https://doi.org/10.1007/s11172-016-1406-z 

    Article  CAS  Google Scholar 

  17. Finkelshtein, E.S., Ushakov, N.V., Krasheninnikov, E.G., and Yampolskii, Y.P., Russ. Chem. Bull., 2004, vol. 53, no. 11, pp. 2604–2610. https://doi.org/10.1007/s11172-005-0161-3.

    Article  CAS  Google Scholar 

  18. Eisch, J.J. and Hask, G.R., J. Org. Chem., 1964, vol. 29, pp. 254–256. https://doi.org/10.1021/jo01024a525

    Article  CAS  Google Scholar 

  19. Wittenberg, D. and Gilman, H., J. Am. Chem. Soc., 1958, vol. 80, pp. 2677–2680. https://doi.org/10.1021/ja01544a022

    Article  CAS  Google Scholar 

  20. Hauser, C.R. and Hance, C.R., J. Am. Chem. Soc., 1952, vol. 74, pp. 5091–5096. https://doi.org/10.1021/ja01140a029

    Article  CAS  Google Scholar 

  21. Greber, G. and Metzinger, L., Makromol. Chem., 1960, vol. 39, pp. 226–233. https://doi.org/10.1002/macp.1960.020390116

    Article  CAS  Google Scholar 

  22. Fritz, G. and Burdt, H., Z. Anorg. Allg. Chem., 1962, vol. 314, pp. 35–52. https://doi.org/10.1002/zaac.19764190305

    Article  CAS  Google Scholar 

  23. Fritz, G. and Burdt, H., Z. Anorg. Allg. Chem., 1962, vol. 317, pp. 35–40. https://doi.org/10.1002/zaac.19623170107

    Article  CAS  Google Scholar 

  24. Laskowski, N., Reis, E.-M., Kӧtzner, L., Baus, J. A., Burschka, C., and Tacke, R., Organometallics, 2013, vol. 32, pp. 3269–3278. https://doi.org/10.1021/om400190q

    Article  CAS  Google Scholar 

  25. Fisher, M., Burschka, C., and Tacke, R., Organometallics, 2014, vol. 33, pp. 1020–1029. https://doi.org/10.1021/om401208y

    Article  CAS  Google Scholar 

  26. Popp, F., Nätscher, J.B., Daiss, J.O., Burschka, C., and Tacke, R., Organometallics, 2007, vol. 26, no. 24, pp. 6014–6028. https://doi.org/10.1021/om700805p

    Article  CAS  Google Scholar 

  27. Cho, Y.S., Yoo, B.R., Ahn, S., and Jung, I.N., Bull. Korean Chem. Soc., 1999, vol. 20, no. 4, pp. 427–430.

    CAS  Google Scholar 

  28. Kopylov, V.M., Fedotov, A.F., Shkol’nik, M.I., and Raigorodskii, I.M., Zh. Obshch. Khim., 1989, vol. 59, no. 11, pp. 2515–2520.

    CAS  Google Scholar 

  29. Patent US 2452895, Publ. 1948.

  30. Bluestein, B.A., J. Am. Chem. Soc., 1948, vol. 70, pp. 3068–3071. https://doi.org/10.1021/ja01189a067

    Article  CAS  Google Scholar 

  31. Patent US 2510148, Publ. 1950.

  32. Knoth, W.H., Jr. and Lindsey, R.V., Jr., J. Org. Chem., 1958, vol. 23, no. 9, pp. 1392–1393. https://doi.org/10.1021/jo01103a619

    Article  CAS  Google Scholar 

  33. Patent US 2850514, Publ. 1958.

  34. Patent US 2500761, Publ. 1958.

  35. Greber, G. and Degler, G., Makromol. Chem., 1962, vol. 52, pp. 174–183. https://doi.org/10.1002/macp.1962.020520115

    Article  CAS  Google Scholar 

  36. Goodwin, J.T.Jr., Boldwin, W.E., and McGregor, R.R., J. Am. Chem. Soc., 1947, vol. 69, p. 2247. https://doi.org/10.1021/ja01201a521

    Article  CAS  Google Scholar 

  37. Barrau, J., Hamida, B., and Satge, J., Synth. React. Inorg. Met.-Org. Chem., 1990, vol. 20, no. 10, pp. 1373–1385. https://doi.org/10.1080/00945719008048640

    Article  CAS  Google Scholar 

  38. Nametkin, N.S., Islamov, T.H., Gusel’nikov, L.E., and Vdovin, V.M., Russ. Chem. Rev., 1972, vol. 41, pp. 111–130. https://doi.org/10.1070/RC1972v041n02ABEH002056

    Article  Google Scholar 

  39. Andrianov, K.A. and Yakushkina, S.E., Russ. Chem. Bull., 1962, vol. 11, no. 8, pp. 1311–1314. https://doi.org/10.1007/BF00907976 

    Article  Google Scholar 

  40. Nametkin, N.S., Gusel’nikov, L.E., Islamov, T.Kh., Shishkina, M.V., and Vdovin, V.M., Dokl. Akad. Nauk SSSR, 1967, vol. 175, no. 1, pp. 136–139.

    CAS  Google Scholar 

  41. Patent US 5358670, Publ. 1994.

  42. Patent EP 2086986, Publ. 2009.

  43. Tang, S. and Zhao, H., RSC Adv., 2014, vol. 4, no. 22, pp. 11251–11287. https://doi.org/10.1039/C3RA47191H

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was performed using the equipment of the Center for Shared Use “Analytical Center for Problems of Deep Oil Refining and Petroleum Chemistry,” Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

Funding

The study was financially supported by the Russian Foundation for Basic Research, project no. 18-08-01099.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Borisov.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ushakov, N.V., Finkel’shtein, E.S., Grushevenko, E.A. et al. Synthesis of Monomers for Promising Membrane Materials, Polyalkylenesiloxanes. Russ J Appl Chem 93, 1646–1654 (2020). https://doi.org/10.1134/S1070427220110038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220110038

Keywords:

Navigation