Skip to main content
Log in

Pathways of Chemical Recycling of Polyvinyl Chloride. Part 2

  • Reviews
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The review deals with the hydrolysis of polyvinyl chloride waste in media of alkalis and organic bases and with the treatment of chlorine-containing waste in critical media (water, ammonia, methanol, carbon dioxide). The principles and mechanisms of the hydrodechlorination and hydroconversion of polyvinyl chloride/vacuum gas oil mixtures and of the gasification of polyvinyl chloride waste and municipal chlorinated plastic waste are described. Procedures for joint hydrothermal treatment and gasification of polyvinyl chloride waste with biomass and coal and various specific methods for polyvinyl chloride dechlorination are analyzed. The major advantage of hydrothermal treatment of polyvinyl chloride in subcritical water is that the products contain no chlorinated organic compounds. The major advantages of the dehydrochlorination of waste containing polyvinyl chloride are high degree of removal of organic chlorine and high H/C ratio in recycled products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1.
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15

Similar content being viewed by others

REFERENCES

  1. Zakharyan, E.M., Petrukhina, N.N., and Maksimov, A.L., Russ. J. Appl. Chem., 2020, vol. 93, no. 9, pp. 1271–1313. https://doi.org/10.1134/S1070427220090013 

    Article  CAS  Google Scholar 

  2. Miyazaki, M., Kamitani, M., Kano, J., Saito, F., and Inoue, T., Adv. Powder Technol., 2005, vol. 16, no. 1, pp. 27–34. https://doi.org/10.1163/1568552053166638

    Article  Google Scholar 

  3. Okada, T., Sutoh, S., Sejima, K., Tomohara, H., and Mishima, Sh., Polym. Degrad. Stab., 2020, vol. 171, ID 109040. https://doi.org/10.1016/j.polymdegradstab.2019.109040

    Article  CAS  Google Scholar 

  4. Shin, Sh.-M., Yoshioka, T., and Okuwaki, A., Polym. Degrad. Stab., 1998, vol. 61, no. 2, pp. 349–353. https://doi.org/10.1016/S0141-3910(97)00221-8

    Article  CAS  Google Scholar 

  5. Owen, E.D., Shan, M., and Twigg, M.V., Polym. Degrad. Stab., 1996, vol. 51, no. 2, pp. 151–158. https://doi.org/10.1016/0141-3910(95)00154-9

    Article  CAS  Google Scholar 

  6. Lv, B., Zhao, G., Li, D., and Liang, Ch., Polym. Degrad. Stab., 2009, vol. 94, no. 7, pp. 1047–1052. https://doi.org/10.1016/j.polymdegradstab.2009.04.004

    Article  CAS  Google Scholar 

  7. Yoshioka, T., Kameda, T., Imai, Sh., and Okuwaki, A., Polym. Degrad. Stab., 2008, vol. 93, no. 6, pp. 1138–1141. https://doi.org/10.1016/j.polymdegradstab.2008.03.007

    Article  CAS  Google Scholar 

  8. Singh, R. and Pant, D., Chem. Eng. Res. Des., 2018, vol. 132, pp. 505–517. https://doi.org/10.1016/j.cherd.2018.01.043

    Article  CAS  Google Scholar 

  9. Singh, R. and Pant, D., Polym. Degrad. Stab., 2016, vol. 123, pp. 80–87. https://doi.org/10.1016/j.polymdegradstab.2015.11.012

    Article  CAS  Google Scholar 

  10. Kameda, T., Imai, K., Grause, G., Mizoguchi, T., and Yoshioka, T., Polym. Degrad. Stab., 2009, vol. 94, no. 9, pp. 1595–1597. https://doi.org/10.1016/j.polymdegradstab.2009.05.006

    Article  CAS  Google Scholar 

  11. Yoshioka, T., Kameda, T., Grause, G., and Imai, K., J. Polym. Res., 2010, vol. 17, pp. 489–493. https://doi.org/10.1007/s10965-009-9335-2

    Article  CAS  Google Scholar 

  12. Guo, L., Shi, G., and Liang, Y., Polym. J., 2001, vol. 42, no. 13, pp. 5581–5587. https://doi.org/10.1016/S0032-3861(01)00037-4

    Article  CAS  Google Scholar 

  13. Guo, L., Shi, G., and Liang, Y., Eur. Polym. J., 1999, vol. 35, no. 2, pp. 215–220. https://doi.org/10.1016/S0014-3057(98)00130-X

    Article  CAS  Google Scholar 

  14. Okuda, K., Yanagisawa, K., Moritaka, Sh.-I., Onda, A., and Kajiyishi, K., Polym. Degrad. Stab., 2003, vol. 79, no. 1, pp. 105–110. https://doi.org/10.1016/S0141-3910(02)00262-8

    Article  CAS  Google Scholar 

  15. Yoshinaga, T., Yamaye, M., Kito, T., Ichiki, T., Ogata, M., Chen, J., Fujino, H., Taminamura, T., and Yamanobe, T., Polym. Degrad. Stab., 2004, vol. 86, no. 3, pp. 541–547. https://doi.org/10.1016/j.polymdegradstab.2004.06.008

    Article  CAS  Google Scholar 

  16. Wu, Y.-H., Zhou, Q., Zhao, T., Deng, M.-L., Zhang, J., and Wang, Yu-Zh., J. Hazard. Mater., 2009, vol. 163, nos. 2–3, pp. 1408–1411. https://doi.org/10.1016/j.jhazmat.2008.07.047

    Article  CAS  PubMed  Google Scholar 

  17. He, X.-L., Zhou, Q., Li, X.-Y., Yang, P., van Kasteren, J.M.N., and Wang, Y.-Zh., Polym. Degrad. Stab., 2012, vol. 97, no. 2, pp. 145–148. https://doi.org/10.1016/j.polymdegradstab.2011.11.005

    Article  CAS  Google Scholar 

  18. Ghaemy, M. and Gharaebi, I., Eur. Polym. J., 2000, vol. 36, no. 9, pp. 1967–1979. https://doi.org/10.1016/S0014-3057(99)00264-5

    Article  CAS  Google Scholar 

  19. Avila, A., Sanchez, E.I., and Gutierrez, M.I., Chemom. Intell. Lab. Syst., 2005, vol. 77, nos. 1–2, pp. 247–250. https://doi.org/10.1016/j.chemolab.2004.10.010

    Article  CAS  Google Scholar 

  20. Kambo, H.S. and Dutta, A., Renew. Sustain. Energy Rev., 2015, vol. 45, pp. 359–378. https://doi.org/10.1016/j.rser.2015.01.050

    Article  CAS  Google Scholar 

  21. Shen, Y., Biomass Bioenergy, 2020, vol. 134, ID 105479. https://doi.org/10.1016/j.biombioe.2020.105479

    Article  CAS  Google Scholar 

  22. Nagai, Y., Smith, R.L., Jr., Inomata, H., and Arai, K., J. Appl. Polym. Sci., 2007, vol. 106, pp. 1075–1086. https://doi.org/10.1002/app.26790

    Article  CAS  Google Scholar 

  23. Poerschmann, J., Weiner, B., Woszidlo, S., Koehler, R., and Kopinke, F.-D., Chemosphere, 2015, vol. 119, pp. 682–689. https://doi.org/10.1016/j.chemosphere.2014.07.058

    Article  CAS  PubMed  Google Scholar 

  24. Fonseca, J.D., Grause, G., Kameda, T., and Yoshioka, T., Polym. Degrad. Stab., 2015, vol. 117, pp. 8–15. https://doi.org/10.1016/j.polymdegradstab.2015.03.011

    Article  CAS  Google Scholar 

  25. Lu, J., Borrjigin, S., Kumagai, Sh., Kameda, T., Saito, Yu., and Yoshioka, T., Waste Manag., 2019, vol. 99, pp. 31–41. https://doi.org/10.1016/j.wasman.2019.08.034

    Article  CAS  PubMed  Google Scholar 

  26. Kubanova, A., Lagadec, A.J.M., and Hawthorne, S.B., Environ. Sci. Technol., 2002, vol. 36, no. 6, pp. 1337–1343. https://doi.org/10.1021/es011186k

    Article  CAS  Google Scholar 

  27. Yao, Zh. and Ma, X., Energy, 2017, vol. 141, pp. 1156–1165. https://doi.org/10.1016/j.energy.2017.10.008

    Article  CAS  Google Scholar 

  28. Ning, X., Teng, H., Wang, G., Zhang, J., Zhang, N., Huang, Ch., and Wang, Ch., Fuel, 2020, vol. 270, ID 117526. https://doi.org/10.1016/j.fuel.2020.117526

    Article  CAS  Google Scholar 

  29. Takeshita, Y., Kato, K., Takahashi, K., Sato, Y., and Nishi, S., J. Supercrit. Fluids, 2004, vol. 3, no. 2, pp. 185–193. https://doi.org/10.1016/j.supflu.2003.10.006

    Article  CAS  Google Scholar 

  30. Qi, Y., He, J., Nie, W., and Chen, M., J. Clean. Prod., 2018, vol. 196, pp. 331–339. https://doi.org/10.1016/j.jclepro.2018.06.074

    Article  CAS  Google Scholar 

  31. Soler, A., Conesa, J.A., and Ortuno, N., Chemosphere, 2017, vol. 186, pp. 167–176. https://doi.org/10.1016/j.chemosphere.2017.07.146

    Article  CAS  PubMed  Google Scholar 

  32. Lin, Y., Ma, X., Peng, X., and Yu, Zh., Bioresource Technol., 2017, vol. 243, pp. 539–547. https://doi.org/10.1016/j.biortech.2017.06.117

    Article  CAS  Google Scholar 

  33. Gandon-Rose, G., Soler, A., Aracil, I., and Gomez-Rico, M.F., Waste Manag., 2020, vol. 102, pp. 204–211. https://doi.org/10.1016/j.wasman.2019.10.050

    Article  CAS  Google Scholar 

  34. Lu, J., Borrjigin, S., Kumagai, Sh., Kameda, T., Saito, Yu., and Yoshioka, T., Waste Manag., 2019, vol. 99, pp. 31–41. https://doi.org/10.1016/j.wasman.2019.08.034

    Article  CAS  PubMed  Google Scholar 

  35. Zhao, P., Li, Zh., Li, T., Yan, W., and Ge, Sh., J. Clean. Prod., 2017, vol. 152, pp. 38–46. https://doi.org/10.1016/j.jclepro.2017.03.101

    Article  CAS  Google Scholar 

  36. Zhao, P., Li, T., Yan, W., and Yuan, L., Environ. Technol., 2017, vol. 39, no. 8, pp. 977–985. https://doi.org/10.1080/09593330.2017.1317841

    Article  CAS  PubMed  Google Scholar 

  37. Xiu, F.-R., Wang, Y., Yu, X., Li, Y., Lu, Y., Zhou, K., He, J., Song, Zh., and Gao, X., Sci. Total Environ., 2020, vol. 708, ID 134532. https://doi.org/10.1016/j.scitotenv.2019.134532

    Article  CAS  PubMed  Google Scholar 

  38. Qi, Y., He, J., Li, Y., Yu, X., Xiu, F.-R., Deng, Y., and Gao, X., Waste Manag., 2018, vol. 80, pp. 1–9. https://doi.org/10.1016/j.wasman.2018.08.052

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, C.-C. and Zhang, F.-Sh., J. Hazard. Mater., 2020, vol. 382, ID 121140. https://doi.org/10.1016/j.jhazmat.2019.121140

    Article  CAS  PubMed  Google Scholar 

  40. Lu, X., Ma, X., Chen, X., Yao, Zh., and Zhang, Ch., Bioresource Technol., 2020, vol. 301, ID 1222763. https://doi.org/10.1016/j.biortech.2020.122763

    Article  CAS  Google Scholar 

  41. Shen, Y., Biomass Bioenergy, 2020, vol. 134, ID 105479. https://doi.org/10.1016/j.biombioe.2020.105479

    Article  CAS  Google Scholar 

  42. Zhao, P., Huang, N., Li, J., and Cui, X., Fuel Process. Technol., 2020, vol. 199, ID 106277. https://doi.org/10.1016/j.fuproc.2019.106277

    Article  CAS  Google Scholar 

  43. Xiu, F.-R., Yu, X., and Qi, Y., J. Clean. Prod., 2020, vol. 260, ID 121085. https://doi.org/10.1016/j.jclepro.2020.121085

    Article  CAS  Google Scholar 

  44. Ahmad, F., Silva, E.L., and Varesche, M.B.A., Renew. Sustain. Energy Rev., 2018, vol. 98, pp. 108–124. https://doi.org/10.1016/j.rser.2018.09.008

    Article  CAS  Google Scholar 

  45. Tekin, K., Karagoz, S., and Bektas, S., Renew. Sustain. Energy Rev., 2014, vol. 40, pp. 637–687. https://doi.org/10.1016/j.rser.2014.07.216

    Article  CAS  Google Scholar 

  46. Wang, T., Zhai, Y., Zhu, Y., Li, C., and Zeng, G., Renew. Sustain. Energy Rev., 2018, vol. 90, pp. 223–247. https://doi.org/10.1016/j.rser.2018.03.071

    Article  CAS  Google Scholar 

  47. Kang, S., Li, X., Fan, J., and Chang, J., Ind. Eng. Chem. Res., 2012, vol. 51, no. 26, pp. 9023–9031. https://doi.org/10.1021/ie300565d

    Article  CAS  Google Scholar 

  48. Yao, Zh. and Ma, X., Bioresource Technol., 2018, vol. 247, pp. 302–309. https://doi.org/10.1016/j.biortech.2017.09.098

    Article  CAS  Google Scholar 

  49. Barbier, J., Charon, N., Loppinet-Serani, A., Mane, L., Ponthus, J., Courtiade, M., Ducrozet, A., Quoinead, A.-A., and Cansell, F., Biomass Bioenergy, 2012, vol. 46, pp. 479–491. https://doi.org/10.1016/j.biombioe.2012.07.011

    Article  CAS  Google Scholar 

  50. Shen, Y., Ind. Eng. Chem. Res., 2016, vol. 55, no. 44, pp. 11638–11644. https://doi.org/10.1021/acs.iecr.6b03365

    Article  CAS  Google Scholar 

  51. Shen, Y., Yu, Sh., Chen, X., Ge, X., and Chen, M., Energy, 2017, vol. 118, pp. 312–323. https://doi.org/10.1016/j.energy.2016.12.047

    Article  CAS  Google Scholar 

  52. Zhang, X., Zhang, L., and Li, A., Bioresource Technol., 2019, vol. 294, ID 1222113. https://doi.org/10.1016/j.biortech.2019.122113

    Article  CAS  Google Scholar 

  53. Qian, Sh., Wang, H., Zarei, E., and Sheng, K., Composites, Part B, 2015, vol. 82, no. 1, pp. 23–29. https://doi.org/10.1016/j.compositesb.2015.08.007

    Article  CAS  Google Scholar 

  54. Li, H., Fang, Zh., Luo, J., and Yang, S., Appl. Catal. B: Environmental, 2017, vol. 200, pp. 182–191. https://doi.org/10.1016/j.apcatb.2016.07.007

    Article  CAS  Google Scholar 

  55. Huang, N., Zhao, P., Ghosh, S., and Fedyukhin, A., Appl. Energy, 2019, vol. 240, pp. 882–892. https://doi.org/10.1016/j.apenergy.2019.02.050

    Article  CAS  Google Scholar 

  56. Liu, K. and Zhang, F.-Sh., J. Hazard. Mater., 2016, vol. 316, pp. 19–25. https://doi.org/10.1016/j.jhazmat.2016.04.080

    Article  CAS  PubMed  Google Scholar 

  57. Yu, J., Sun, L., Ma, Ch., Qiao, Y., and Yao, H., Waste Manag., 2016, vol. 48, pp. 300–314. https://doi.org/10.1016/j.wasman.2015.11.041

    Article  CAS  PubMed  Google Scholar 

  58. Vymazal, Z., Mastny, L., and Vymazalova, Z., Eur. Polym. J., 1985, vol. 21, no. 8, pp. 747–755. https://doi.org/10.1016/0014-3057(85)90117-X

    Article  CAS  Google Scholar 

  59. Bengough, W.I. and Grant, G.F., Eur. Polym. J., 1968, vol. 4, no. 4, pp. 521–535. https://doi.org/10.1016/0014-3057(68)90071-2

    Article  CAS  Google Scholar 

  60. Hollander, A., Zimmermann, H., and Behnisch, J., Polym. J., 1992, vol. 33, no. 3, pp. 637–642. https://doi.org/10.1016/0032-3861(92)90743-G

    Article  Google Scholar 

  61. Fikhman, V.D., Vaiman, E.Ya., Pakshver, A.B., and Minsker, K.S., Polym. Sci., Ser. A, 1972, vol. 14, no. 11, pp. 2376–2384. https://doi.org/10.1016/0032-3950(72)90206-7 

    Article  CAS  Google Scholar 

  62. Kamo, T., Polym. Degrad. Stab., 2013, vol. 98, no. 2, pp. 502–507. https://doi.org/10.1016/j.polymdegradstab.2012.12.008

    Article  CAS  Google Scholar 

  63. Abdullin, M.I., Gatallin, R.F., Kefeli, K.S., and Rasumovskii, S.D., Eur. Polym. J., 1978, vol. 14, no. 10, pp. 811–816. https://doi.org/10.1016/0014-3057(78)90179-9

    Article  CAS  Google Scholar 

  64. Shapoval, G.S., Tomilov, A.P., Pud, A.A., and Batsalova, K.V., Polym. Sci., Ser. A, 1987, vol. 29, no. 7, pp. 1564–1572. https://doi.org/10.1016/0032-3950(87)90418-7 ].

    Article  Google Scholar 

  65. Giacomucci, L., Raddadi, N., Soccio, M., Lotti, N., and Fava, F., New Biotechnol., 2019, vol. 52, pp. 35–41. https://doi.org/10.1016/j.nbt.2019.04.005

    Article  CAS  Google Scholar 

  66. Gong, J., Yao, K., Liu, J., Wen, X., Chen, X., Jiang, Zh., Mijowska, E., and Tang, T., Chem. Eng. J., 2013, vols. 215–216, pp. 339–347. https://doi.org/10.1016/j.cej.2012.11.037

    Article  CAS  Google Scholar 

  67. Starnes, W.H., Schilling, F.C., Plitz, K.B., Hartless, R.L., and Bovey, F.A., Macromolecules, 1979, vol. 12, pp. 13–19. https://doi.org/10.1080/09593330.2017.1317841

    Article  CAS  Google Scholar 

  68. Hjertberg, Th. and Wendel, A., Polym. J., 1982, vol. 23, pp. 1640–1645.

    Article  Google Scholar 

  69. Contreras, J.M., Martinez, G., and Millan, J., Polym. J., 2001, vol. 42, no. 25, pp. 9867–9876. https://doi.org/10.1016/S0032-3861(01)00533-X

    Article  CAS  Google Scholar 

  70. Keane, M.A., J. Chem. Technol. Biotechnol., 2007, vol. 82, pp. 787–795. https://doi.org/10.1002/jctb.1757

    Article  CAS  Google Scholar 

  71. Kamo, T. and Kodera, Y., Polym. Degrad. Stab., 2005, vol. 87, no. 1, pp. 95–102. https://doi.org/10.1016/j.polymdegradstab.2004.07.010

    Article  CAS  Google Scholar 

  72. Kamo, T., Kondo, Y., Kodera, Y., Sato, Y., and Kushiyama, S., Polym. Degrad. Stab., 2003, vol. 81, no. 2, pp. 187–196. https://doi.org/10.1016/S0141-3910(03)00088-0

    Article  CAS  Google Scholar 

  73. Williams, P.T. and Slaney, E., Resources, Conserv. Recycl., 2007, vol. 51, no. 4, pp. 754–769. https://doi.org/10.1016/j.resconrec.2006.12.002

    Article  Google Scholar 

  74. Ali, M.F. and Siddiqui, M.N., J. Anal. Appl. Pyrol., 2005, vol. 74, pp. 282–289. https://doi.org/10.1016/j.jaap.2004.12.010

    Article  CAS  Google Scholar 

  75. Karayildirim, T., Yanik, J., Ucar, S., Saglam, M., and Yuksel, M., Fuel Process. Technol., 2001, vol. 73, no. 1, pp. 23–35. https://doi.org/10.1016/S0378-3820(01)00192-8

    Article  CAS  Google Scholar 

  76. Uçar, S., Karagöz, S., Karayildirim, T., and Yanik, J., Polym. Degrad. Stab., 2002, vol. 75, no. 1, pp. 161–171. https://doi.org/10.1016/S0141-3910(01)00215-4

    Article  Google Scholar 

  77. Karagöz, S., Karayildirim, T., Uçar, S., and Yuksel, M., Fuel, 2003, vol. 82, no. 4, pp. 415–423. https://doi.org/10.1016/S0016-2361(02)00250-8

    Article  Google Scholar 

  78. Lopez, G., Artetxe, M., Amutio, M., Alvarez, J., Bilbao, J., and Olazar, M., Renew. Sustain. Energy Rev., 2018, vol. 82, no. 1, pp. 576–596. https://doi.org/10.1016/j.rser.2017.09.032

    Article  CAS  Google Scholar 

  79. Slapak, M.J., van Kasteren, J.M.N., and Drinkenburg, B.A.A.H., Polym. Adv. Technol., 1999, vol. 10, no. 10, pp. 596–602. https://doi.org/10.1002/(sici)1099-1581(199910)10:10<596::aid-pat913>3.0.co;2-j

    Article  CAS  Google Scholar 

  80. Slapak, M.J., van Kasteren, J.M.N., and Drinkenburg, B.A.A.H., Resources, Conserv. Recycl., 2000, vol. 30, no. 2, pp. 81–93. https://doi.org/10.1016/S0921-3449(00)00047-1

    Article  Google Scholar 

  81. Japan Patent 7244546, Publ. 1972.

  82. Borgianni, C., De Filippis, P., Pochetti, F., and Paolucci, M., Fuel, 2002, vol. 81, no. 14, pp. 1827–1833. https://doi.org/10.1016/S0016-2361(02)00097-2

    Article  CAS  Google Scholar 

  83. Kamo, T., Takaoka, K., Otomo, J., and Takahashi, H., Fuel, 2006, vol. 85, nos. 7–8, pp. 1052–1059. https://doi.org/10.1016/j.fuel.2005.10.002

    Article  CAS  Google Scholar 

  84. Lin, S.-Y., Suzuki, Y., and Hatano, H., Energy Fuels, 2001, vol. 15, no. 2, pp. 339–343. https://doi.org/10.1021/ef000089u

    Article  CAS  Google Scholar 

  85. Zabłocka-Malicka, M., Rutkowski, P., and Szczepaniak, W., Waste Manag., 2015, vol. 46, pp. 488–496. https://doi.org/10.1016/j.wasman.2015.08.001

    Article  CAS  PubMed  Google Scholar 

  86. Sivakumar, P., Jung, H., Tierney, J.W., and Wender, I., Fuel Process. Technol., 1996, vol. 49, nos. 1–3, pp. 219–232. https://doi.org/10.1016/S0378-3820(96)01028-4

    Article  CAS  Google Scholar 

  87. Zhang, Sh. and Yu, Y., Procedia Environ. Sci., 2016, vol. 31, pp. 903–910. https://doi.org/10.1016/j.proenv.2016.02.108

    Article  CAS  Google Scholar 

  88. Chen, Sh., Meng, A., Long, Y., Zhou, H., Li, Q., and Zhang, Y., J. Energy Inst., 2015, vol. 88, no. 3, pp. 332–343. https://doi.org/10.1016/j.joei.2014.07.007

    Article  CAS  Google Scholar 

  89. Cho, M.-H., Choi, Y.-K., and Kim, J.-S., Energy, 2015, vol. 87, pp. 586–593. https://doi.org/10.1016/j.energy.2015.05.026

    Article  CAS  Google Scholar 

  90. Kim, J.-W., Mun, T.-Y., Kim, J.-O., and Kim, J.-S., Fuel, 2011, vol. 90, no. 6, pp. 2266–2272. https://doi.org/10.1016/j.fuel.2011.02.021

    Article  CAS  Google Scholar 

  91. Cho, M.-H., Mun, T.-Y., and Kim, J.-S., Energy, 2013, vol. 53, pp. 299–305. https://doi.org/10.1016/j.energy.2013.02.041

    Article  CAS  Google Scholar 

  92. Cho, M.-H., Mun, T.-Y., and Kim, J.-S., Energy, 2013, vol. 58, pp. 688–694. https://doi.org/10.1016/j.energy.2013.06.021

    Article  CAS  Google Scholar 

  93. Cho, M.-H., Mun, T.-Y., Choi, Y.-K., and Kim, J.-S., Energy, 2014, vol. 70, pp. 128–134. https://doi.org/10.1016/j.energy.2014.03.097

    Article  CAS  Google Scholar 

  94. Zhou, Ch., Stuermer, Th., Gunarathne, R., Yang, W., and Blasiak, W., Fuel, 2014, vol. 122, pp. 36–46. https://doi.org/10.1016/j.fuel.2014.01.029

    Article  CAS  Google Scholar 

  95. Dou, B., Wang, K., Jiang, B., Song, Y., Zhang, Ch., Chen, H., and Xu, Y., Int. J. Hydrogen Energy, 2016, vol. 41, no. 6, pp. 3803–3810. https://doi.org/10.1016/j.ijhydene.2015.12.197

    Article  CAS  Google Scholar 

  96. Baloch, H.A., Yang, T., Li, R., Nizamuddin, S., Kai, X., and Bhutto, A.W., Clean Technol. Environ. Policy, 2016, vol. 18, pp. 1031–1042. https://doi.org/10.1007/s10098-016-1092-4

    Article  CAS  Google Scholar 

  97. Wilk, V. and Hofbauer, H., Energy Fuels, 2013, vol. 27, no. 6, pp. 3261–3273. https://doi.org/10.1021/ef400349k

    Article  CAS  Google Scholar 

  98. Lee, J.W., Yu, T.U., Lee, J.W., Moon, J.H., Jeong, H.J., Park, S.Sh., Yang, W., and Lee, U.D., Energy Fuels, 2013, vol. 27, no. 4, pp. 2092–2098. https://doi.org/10.1021/ef301758z

    Article  CAS  Google Scholar 

  99. Hu, B., Huang, Q., Buekens, A.Y., and Yan, J., Energy Convers. Manag., 2017, vol. 153, pp. 473–481. https://doi.org/10.1016/j.enconman.2017.10.026

    Article  CAS  Google Scholar 

Download references

Funding

The study was performed within the framework of the government assignment for the Institute of Petrochemical Synthesis, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Zakharyan.

Ethics declarations

A.L. Maksimov is the Editor-in-Chief of Zhurnal Prikladnoi Khimii/Russian Journal of Applied Chemistry; the other authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharyan, E.M., Petrukhina, N.N., Dzhabarov, E.G. et al. Pathways of Chemical Recycling of Polyvinyl Chloride. Part 2. Russ J Appl Chem 93, 1445–1490 (2020). https://doi.org/10.1134/S1070427220100018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220100018

Keywords:

Navigation