Skip to main content

Nanocomposites Based on Biocompatible Thermoelastoplastic and Carbon Nanoparticles for Use in Cardiovascular Surgery

Abstract

A biocompatible thermoelastoplastic, poly(styrene-block-isobutylene-block-styrene), was incorporated with carbon nanotubes. The resulting nanocomposites containing 1, 2, and 4% filler were analyzed by optical microscopy and scanning electronic microscopy, and their strength, elastic-strain properties, contact angle with water, and electrical conductivity were evaluated. Partial heterogeneity in the nanofiller distribution in the macromolecular matrix was revealed. With an increase in the nanotube concentration, the tensile strength increases nonlinearly and the extension ability decreases. Statistically significant differences in the contact angle between the control samples and samples containing 4% carbon nanoparticles were revealed (94.1°± 1.7°and 84.4°± 2.3°, respectively). The electrical conductivity of the samples increases with an increase in the content of nanoparticles. The possibility and conditions of preparing the new promising material for cardiovascular surgery were determined.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Teo, A.J.T., Mishra, A., Park, I., Kim, Y.-J., Park, W.-T., and Yoon, Y.-J., ACS Biomater. Sci. Eng., 2016, vol. 2, no. 4, pp. 454–472. https://doi.org/10.1021/acsbiomaterials.5b00429

    CAS  Article  Google Scholar 

  2. Jaganathan, S.K., Supriyanto, E., Murugesan, S., Balaji, A., and Asokan, M.K., Biomed Res. Int., 2014, ID 459465. https://doi.org/10.1155/2014/459465

  3. Klyshnikov, K.Yu., Ovcharenko, E.A., Rezvova, M.A., Glushkova, T.V., and Barbarash, L.S., Kompl. Probl. Serd.-Sosud. Zabol., 2018, vol. 7, pp. 79–88. https://doi.org/10.17802/2306-1278-2018-7-2-79-88

    Article  Google Scholar 

  4. Wang, L., Wu, S., Cao, G., Fan, Y., Dunne, N., and Li, X., J. Mater. Chem. B, 2019, vol. 7, no. 47, pp. 7439–7459. https://doi.org/10.1039/C9TB01539F

    CAS  Article  PubMed  Google Scholar 

  5. Narayan, R., Nanobiomaterials, Cambridge: Woodhead, 2018, pp. 357–384. https://doi.org/10.1016/B978-0-08-100716-7.00014-3

    Book  Google Scholar 

  6. Keledi, G., Hári, J., and Pukánszky, B., Nanoscale, 2012, vol. 4, no. 6, pp. 1919–1938. https://doi.org/10.1039/C2NR11442A

    CAS  Article  PubMed  Google Scholar 

  7. Hussain, F., Hojjati, M., Okamoto, M., and Gorga, R.E., J. Compos. Mater., 2006, vol. 40, no. 17, pp. 1511–1575. https://doi.org/10.1177/0021998306067321

    CAS  Article  Google Scholar 

  8. Maurer, E., Barcikowski, S., and Gökce, B., Chem. Eng. Technol., 2017, vol. 40, no. 9, pp. 1535–1543. https://doi.org/10.1002/ceat.201600506

    CAS  Article  Google Scholar 

  9. Eatemadi, A., Daraee, H., Karimkhanloo, H., Kouhi, M., Zarghami, N., Akbarzadeh, A., Abasi, M. Hanifehpour, Y., and Joo, S.W., Nanoscale Res. Lett., 2014, vol. 9, p. 393. https://doi.org/10.1186/1556-276X-9-393

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Sheheri, S.Z., Amshany, Z.M., Sulami, Q.A., Tashkandi, N.Y., Hussein, M.A., and Shishtawy, R.M., Des. Monom. Polym., 2019, vol. 22, no. 1, pp. 8–53. https://doi.org/10.1080/15685551.2019.1565664

    CAS  Article  Google Scholar 

  11. Kalakonda, P., Banne, S., and Kalakonda, P., Nanomater. Nanotechnol., 2019, vol. 9, ID 184798041984085. https://doi.org/10.1177/1847980419840858

  12. Crosby, A.J. and Lee, J., Polym. Rev., 2007, vol. 47, no. 2, pp. 217–229. https://doi.org/10.1080/15583720701271278

    CAS  Article  Google Scholar 

  13. Tjong, S.C., Mater. Sci. Eng. R., 2006, vol. 53, nos. 3–4, pp. 73–197. https://doi.org/10.1016/j.mser.2006.06.001

    CAS  Article  Google Scholar 

  14. Bhattacharya, M., Materials, 2016, vol. 9, p. E262. https://doi.org/10.3390/ma9040262

    CAS  Article  PubMed Central  Google Scholar 

  15. Bovina, E.M., Romanov, B.K., Kazakov, A.S., Vel’ts, N.Yu., Zhuravleva, E.O., Bukatina, T.M., Alyautdin, R.N., and Merkulov, V.A., Bezopasn. Risk Farmakoter., 2019, vol. 7, no. 3, pp. 127–138. https://doi.org/10.30895/2312-7821-2019-7-3-127-138

    Article  Google Scholar 

  16. Mamidi, N., Leija, H.M., Diabb, J.M., Lopez Romo, I., Hernandez, D., Castrejón, J.V., Martinez Romero, O., Barrera, E.V., and Elias Zúñiga, A., J. Biomed. Mater. Res. A, 2017, vol. 105, no. 11, pp. 3042–3049. https://doi.org/10.1002/jbm.a.36168

    CAS  Article  PubMed  Google Scholar 

  17. Jumaili, A., Alancherry, S., Bazaka, K., and Jacob, M., Materials, 2017, vol. 10, no. 9, ID 1066. https://doi.org/10.3390/ma10091066

  18. Hule, R. and Pochan, D., Mater. Res. Soc. Bull., 2007, vol. 32, no. 4, pp. 354–358. https://doi.org/10.1557/mrs2007.235

    CAS  Article  Google Scholar 

  19. Pinchuk, L., Wilson, G.J., Barry, J.J., Schoephoerster, R.T., Parel, J.M., and Kennedy, J.P., Biomaterials, 2008, vol. 29, no. 4, pp. 448–460. https://doi.org/10.1016/j.biomaterials.2007.09.041

    CAS  Article  PubMed  Google Scholar 

  20. Ovcharenko, E., Rezvova, M., Nikishau, P., Kostjuk, S., Glushkova, T., Antonova, L., Trebushat, D., Akentieva, T., Shishkova, D., Krivikina, E., Klyshnikov, K., Kudryavtseva, Y., and Barbarash, L., Appl. Sci., 2019, vol. 9, no. 22, ID 4773. https://doi.org/10.3390/app9224773

  21. Fray, M.E., Prowans, P., Puskas, J.E., and Altsta, V., Biomacromolecules, 2006, vol. 7, no. 3, pp. 844–850. https://doi.org/10.1021/bm050971c

    CAS  Article  PubMed  Google Scholar 

  22. Silva, M., Alves, N.M., and Paiva, M.C., Polym. Adv. Technol., 2017, vol. 29, no. 2, pp. 687–700. https://doi.org/10.1002/pat.4164

    CAS  Article  Google Scholar 

  23. Berber, M., Carbon Nanotubes, London: IntechOpen, 2016, pp. 155–194. https:// doi.org/10.5772/62635

    Google Scholar 

  24. Gilmore, K.J., Moulton, S.E., and Wallace, G.G., Carbon, 2007, vol. 45, no. 2, pp. 402–410. https://doi.org/10.1016/j.carbon.2006.09.015

    CAS  Article  Google Scholar 

  25. Zhao, W., Li, T., Li, Y., O’Brien, D.J., Terrones, M., Wei, B., Suhr, J., and Lu, L.X., J. Materiomics, 2018, vol. 4, no. 2, pp. 157–164. https://doi.org/10.1016/j.jmat.2018.01.006

    Article  Google Scholar 

  26. Falde, E.J., Yohe, S.T., Colson, Y.L., and Grinstaff, M.W., Biomaterials, 2016, vol. 104, pp. 87–103. https://doi.org/10.1016/j.biomaterials.2016.06.050

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Martínez-Hernández, A.L., Velasco-Santos, С., and Castaño, V.M., Curr. Nanosci., 2010, vol. 6, no. 1, pp. 12–39. https://doi.org/10.2174/157341310790226270

    Article  Google Scholar 

  28. Alshehri, R., Ilyas, A.M., Hasan, A., Arnaout, A., Ahmed, F., and Memic, A., J. Med. Chem., 2016, vol. 59, no. 18, pp. 8149–8167. https://doi.org/10.1021/acs.jmedchem.5b01770

    CAS  Article  PubMed  Google Scholar 

  29. Kaur, T. and Thirugnanam, A., RSC Adv., 2016, vol. 6, no. 46, pp. 39982–39992. https://doi.org/10.1039/C6RA08006E

    CAS  Article  Google Scholar 

  30. Marroquin, J.B., Rhee, K., and Park, S., Carbohydr. Polym., 2013, vol. 92, no. 2, pp. 1783–1791. https://doi.org/10.1016/j.carbpol.2012.11.042

    CAS  Article  PubMed  Google Scholar 

  31. Liu, Z., Peng, W., Zare, Y., Hui, D., and Rhee, K.Y., RSC Adv., 2018, vol. 8, no. 34, pp. 19001–19010. https://doi.org/10.1039/C8RA00811F

    CAS  Article  Google Scholar 

  32. Cui, Z., Yang, B., and Liac, R.-K., Engineering, 2016, vol. 2, no. 1, pp. 141–148. https://doi.org/10.1016/J.ENG.2016.01.028

    CAS  Article  Google Scholar 

  33. Mora, A., Verma, P., and Kumar, S., Compos. B: Eng., 2020, vol. 183, p. 107600. https://doi.org/10.1016/j.compositesb.2019.10760

    CAS  Article  Google Scholar 

Download references

Funding

The reported study was funded by RFBR and Kemerovo region, project number 20-415-420006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Rezvova.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rezvova, M.A., Glushkova, T.V., Makarevich, M.I. et al. Nanocomposites Based on Biocompatible Thermoelastoplastic and Carbon Nanoparticles for Use in Cardiovascular Surgery. Russ J Appl Chem 93, 1412–1420 (2020). https://doi.org/10.1134/S1070427220090141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220090141

Keywords:

  • nanocomposites
  • carbon nanotubes
  • biocompatible materials
  • electrical conductivity
  • ternary block copolymers