Skip to main content

Nanocomposites Based on Biocompatible Thermoelastoplastic and Carbon Nanoparticles for Use in Cardiovascular Surgery


A biocompatible thermoelastoplastic, poly(styrene-block-isobutylene-block-styrene), was incorporated with carbon nanotubes. The resulting nanocomposites containing 1, 2, and 4% filler were analyzed by optical microscopy and scanning electronic microscopy, and their strength, elastic-strain properties, contact angle with water, and electrical conductivity were evaluated. Partial heterogeneity in the nanofiller distribution in the macromolecular matrix was revealed. With an increase in the nanotube concentration, the tensile strength increases nonlinearly and the extension ability decreases. Statistically significant differences in the contact angle between the control samples and samples containing 4% carbon nanoparticles were revealed (94.1°± 1.7°and 84.4°± 2.3°, respectively). The electrical conductivity of the samples increases with an increase in the content of nanoparticles. The possibility and conditions of preparing the new promising material for cardiovascular surgery were determined.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.


  1. Teo, A.J.T., Mishra, A., Park, I., Kim, Y.-J., Park, W.-T., and Yoon, Y.-J., ACS Biomater. Sci. Eng., 2016, vol. 2, no. 4, pp. 454–472.

    CAS  Article  Google Scholar 

  2. Jaganathan, S.K., Supriyanto, E., Murugesan, S., Balaji, A., and Asokan, M.K., Biomed Res. Int., 2014, ID 459465.

  3. Klyshnikov, K.Yu., Ovcharenko, E.A., Rezvova, M.A., Glushkova, T.V., and Barbarash, L.S., Kompl. Probl. Serd.-Sosud. Zabol., 2018, vol. 7, pp. 79–88.

    Article  Google Scholar 

  4. Wang, L., Wu, S., Cao, G., Fan, Y., Dunne, N., and Li, X., J. Mater. Chem. B, 2019, vol. 7, no. 47, pp. 7439–7459.

    CAS  Article  PubMed  Google Scholar 

  5. Narayan, R., Nanobiomaterials, Cambridge: Woodhead, 2018, pp. 357–384.

    Book  Google Scholar 

  6. Keledi, G., Hári, J., and Pukánszky, B., Nanoscale, 2012, vol. 4, no. 6, pp. 1919–1938.

    CAS  Article  PubMed  Google Scholar 

  7. Hussain, F., Hojjati, M., Okamoto, M., and Gorga, R.E., J. Compos. Mater., 2006, vol. 40, no. 17, pp. 1511–1575.

    CAS  Article  Google Scholar 

  8. Maurer, E., Barcikowski, S., and Gökce, B., Chem. Eng. Technol., 2017, vol. 40, no. 9, pp. 1535–1543.

    CAS  Article  Google Scholar 

  9. Eatemadi, A., Daraee, H., Karimkhanloo, H., Kouhi, M., Zarghami, N., Akbarzadeh, A., Abasi, M. Hanifehpour, Y., and Joo, S.W., Nanoscale Res. Lett., 2014, vol. 9, p. 393.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Sheheri, S.Z., Amshany, Z.M., Sulami, Q.A., Tashkandi, N.Y., Hussein, M.A., and Shishtawy, R.M., Des. Monom. Polym., 2019, vol. 22, no. 1, pp. 8–53.

    CAS  Article  Google Scholar 

  11. Kalakonda, P., Banne, S., and Kalakonda, P., Nanomater. Nanotechnol., 2019, vol. 9, ID 184798041984085.

  12. Crosby, A.J. and Lee, J., Polym. Rev., 2007, vol. 47, no. 2, pp. 217–229.

    CAS  Article  Google Scholar 

  13. Tjong, S.C., Mater. Sci. Eng. R., 2006, vol. 53, nos. 3–4, pp. 73–197.

    CAS  Article  Google Scholar 

  14. Bhattacharya, M., Materials, 2016, vol. 9, p. E262.

    CAS  Article  PubMed Central  Google Scholar 

  15. Bovina, E.M., Romanov, B.K., Kazakov, A.S., Vel’ts, N.Yu., Zhuravleva, E.O., Bukatina, T.M., Alyautdin, R.N., and Merkulov, V.A., Bezopasn. Risk Farmakoter., 2019, vol. 7, no. 3, pp. 127–138.

    Article  Google Scholar 

  16. Mamidi, N., Leija, H.M., Diabb, J.M., Lopez Romo, I., Hernandez, D., Castrejón, J.V., Martinez Romero, O., Barrera, E.V., and Elias Zúñiga, A., J. Biomed. Mater. Res. A, 2017, vol. 105, no. 11, pp. 3042–3049.

    CAS  Article  PubMed  Google Scholar 

  17. Jumaili, A., Alancherry, S., Bazaka, K., and Jacob, M., Materials, 2017, vol. 10, no. 9, ID 1066.

  18. Hule, R. and Pochan, D., Mater. Res. Soc. Bull., 2007, vol. 32, no. 4, pp. 354–358.

    CAS  Article  Google Scholar 

  19. Pinchuk, L., Wilson, G.J., Barry, J.J., Schoephoerster, R.T., Parel, J.M., and Kennedy, J.P., Biomaterials, 2008, vol. 29, no. 4, pp. 448–460.

    CAS  Article  PubMed  Google Scholar 

  20. Ovcharenko, E., Rezvova, M., Nikishau, P., Kostjuk, S., Glushkova, T., Antonova, L., Trebushat, D., Akentieva, T., Shishkova, D., Krivikina, E., Klyshnikov, K., Kudryavtseva, Y., and Barbarash, L., Appl. Sci., 2019, vol. 9, no. 22, ID 4773.

  21. Fray, M.E., Prowans, P., Puskas, J.E., and Altsta, V., Biomacromolecules, 2006, vol. 7, no. 3, pp. 844–850.

    CAS  Article  PubMed  Google Scholar 

  22. Silva, M., Alves, N.M., and Paiva, M.C., Polym. Adv. Technol., 2017, vol. 29, no. 2, pp. 687–700.

    CAS  Article  Google Scholar 

  23. Berber, M., Carbon Nanotubes, London: IntechOpen, 2016, pp. 155–194. https://

    Google Scholar 

  24. Gilmore, K.J., Moulton, S.E., and Wallace, G.G., Carbon, 2007, vol. 45, no. 2, pp. 402–410.

    CAS  Article  Google Scholar 

  25. Zhao, W., Li, T., Li, Y., O’Brien, D.J., Terrones, M., Wei, B., Suhr, J., and Lu, L.X., J. Materiomics, 2018, vol. 4, no. 2, pp. 157–164.

    Article  Google Scholar 

  26. Falde, E.J., Yohe, S.T., Colson, Y.L., and Grinstaff, M.W., Biomaterials, 2016, vol. 104, pp. 87–103.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Martínez-Hernández, A.L., Velasco-Santos, С., and Castaño, V.M., Curr. Nanosci., 2010, vol. 6, no. 1, pp. 12–39.

    Article  Google Scholar 

  28. Alshehri, R., Ilyas, A.M., Hasan, A., Arnaout, A., Ahmed, F., and Memic, A., J. Med. Chem., 2016, vol. 59, no. 18, pp. 8149–8167.

    CAS  Article  PubMed  Google Scholar 

  29. Kaur, T. and Thirugnanam, A., RSC Adv., 2016, vol. 6, no. 46, pp. 39982–39992.

    CAS  Article  Google Scholar 

  30. Marroquin, J.B., Rhee, K., and Park, S., Carbohydr. Polym., 2013, vol. 92, no. 2, pp. 1783–1791.

    CAS  Article  PubMed  Google Scholar 

  31. Liu, Z., Peng, W., Zare, Y., Hui, D., and Rhee, K.Y., RSC Adv., 2018, vol. 8, no. 34, pp. 19001–19010.

    CAS  Article  Google Scholar 

  32. Cui, Z., Yang, B., and Liac, R.-K., Engineering, 2016, vol. 2, no. 1, pp. 141–148.

    CAS  Article  Google Scholar 

  33. Mora, A., Verma, P., and Kumar, S., Compos. B: Eng., 2020, vol. 183, p. 107600.

    CAS  Article  Google Scholar 

Download references


The reported study was funded by RFBR and Kemerovo region, project number 20-415-420006.

Author information

Authors and Affiliations


Corresponding author

Correspondence to M. A. Rezvova.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rezvova, M.A., Glushkova, T.V., Makarevich, M.I. et al. Nanocomposites Based on Biocompatible Thermoelastoplastic and Carbon Nanoparticles for Use in Cardiovascular Surgery. Russ J Appl Chem 93, 1412–1420 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • nanocomposites
  • carbon nanotubes
  • biocompatible materials
  • electrical conductivity
  • ternary block copolymers