Skip to main content
Log in

Conversion of Dimethyl Ether to a Triptane-Enriched Mixture of Liquid Hydrocarbons: Influence of Modifier and Reaction Conditions

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The influence of the active element in the alkylation catalyst as a component of a combined catalyst for the production of liquid hydrocarbons with increased triptane content from dimethyl ether was studied. A mixture of liquid hydrocarbons containing more than 8.5 wt % triptane was prepared under the optimum conditions (temperature 340°С, pressure 10 MPa, dimethyl ether weight space velocity 4 h–1) on a combined catalyst in the form of a physical mixture of catalysts (mean grain size 2–4 mm) for the synthesis of lower olefins, based on Mg-modified НZSM-5 zeolite, and for the alkylation, based on La- and Pd-modified HY zeolite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Keil, F.J., Micropor. Mesopor. Mater., 1999, vol. 29, pp. 49–66. https://doi.org/10.1016/S1387-1811(98)00320-5

    Article  CAS  Google Scholar 

  2. Martinez-Espin, J.S., Mortén, M., Janssens, T.V.W., Svelle, S., Beato, P., and Olsbye, U., Catal. Sci. Technol., 2017, vol. 7, no. 13, pp. 2700–2716. https://doi.org/10.1039/c7cy00129k

    Article  CAS  Google Scholar 

  3. Wen, Z., Wang, C., and Wei, J., Catal. Sci. Technol., 2016, vol. 6, pp. 8089–8097. https://doi.org/10.1039/c6cy01818a

    Article  CAS  Google Scholar 

  4. Dagle, R.A., Lizarazo-Adarme, J.A., Gray, M.J., White, J.F., King, D.L., and Palo, D.R., Fuel Process. Technol., 2014, vol. 123, pp. 65–74. https://doi.org/10.1016/j.fuproc.2014.01.041

    Article  CAS  Google Scholar 

  5. Jamil, A.K., Muraza, O., Miyake, K., Ahmed, M.H.M., Yamani, Z.H., Hirota, Y., and Nishiyama, N., Energy Fuels, 2018, vol. 32, pp. 11796–11801. https://doi.org/10.1021/acs.energyfuels.8b03008

    Article  CAS  Google Scholar 

  6. Li, J.Q., Han, D.Z., He, T., Liu, G.B., Zi, Z.Y., Wang, Z.Q., Wu, J.L., and Wu, J.H., Fuel Process. Technol., 2019, vol. 191, pp. 104–110. https://doi.org/10.1016/j.fuproc.2019.03.029

    Article  CAS  Google Scholar 

  7. Wen, Z.Y., Li, Z.M., Ge, Q.J., Zhou, Y., Sun, J., Abroshan, H., and Li, G., J. Catal., 2018, vol. 363, pp. 26–33. https://doi.org/10.1016/j.jcat.2018.04.010

    Article  CAS  Google Scholar 

  8. Khadzhiev, S.N., Magomedova, M.V., and Peresypkina, E.G., Petrol. Chem., 2016, vol. 56, no. 3, pp. 181–196. https://doi.org/10.1134/S0965544116030063 

    Article  CAS  Google Scholar 

  9. Patent RU 2296735, Publ. 2007.

  10. Bercaw, J.E., Hazari, N., Labinger, J.A., Scott, V.J., and Sunley, G.J., J. Am. Chem. Soc., 2008, vol. 130, p. 11988. https://doi.org/10.1021/ja803029s

    Article  CAS  PubMed  Google Scholar 

  11. Patent US 7825287 B2, Publ. 2010.

  12. Simonetti, D.A., Ahn, J.H., and Iglesia, E., ChemCatChem, 2011, vol. 3, pp. 704–718. https://doi.org/10.1002/cctc.201000383

    Article  CAS  Google Scholar 

  13. Ahn, J.H., Temel, B., and Iglesia, E., Angew. Chem., 2009, vol. 48, pp. 3814–3816. https://doi.org/10.1002/anie.200900541

    Article  CAS  Google Scholar 

  14. Simonetti, D.A., Carr, R.T., and Iglesia, E., J. Catal., 2012, vol. 285, pp. 19–30. https://doi.org/10.1016/j.jcat.2011.09.007

    Article  CAS  Google Scholar 

  15. Schaidle, J.A., Ruddy, D.A., and Habas, S.E., ACS Catal., 2015, vol. 5, pp. 1794–1803. https://doi.org/10.1021/cs501876w

    Article  CAS  Google Scholar 

  16. Matieva, Z.M., Snatenkova, Yu.M., Kolesnichenko, N.V., Gerzeliev, I.V., and Maksimov, A.L., Russ. Chem. Bull., Int. Ed., 2020, vol. 69, no. 4, pp. 691–696. https://doi.org/10.1007/s11172-020-2819-2 

    Article  CAS  Google Scholar 

  17. Matieva, Z.M., Kurumov, S.A., Snatenkova, Yu.M., Kolesnichenko, N.V., Bondarenko, G.N., and Khadzhiev, S. N., Russ. J. Appl. Chem., 2019, vol. 92, no. 2, pp. 235–243. https://doi.org/10.1134/S1070427219020101 

    Article  CAS  Google Scholar 

  18. Patent RU 2482917, Publ. 2013.

  19. Shiriyazdanov, R.R., Polzunovsk. Vestn., 2010, no. 3, pp. 121–126.

    Google Scholar 

  20. Sievers, C., Liebert, J.S., Stratmann, M.M., Olindo, R., and Lercher, J.A., Appl. Catal. A, 2008, vol. 336, pp. 89–100. https://doi.org/10.1016/j.apcata.2007.09.039

    Article  CAS  Google Scholar 

  21. Goryainova, T.I., Biryukova, E.N., Kolesnichenko, N.V., and Khadzhiev, S.N., Petrol. Chem., 2011, vol. 51, no. 3, pp. 169–173. https://doi.org/10.1134/S096554411101004X 

    Article  CAS  Google Scholar 

  22. Ke Zhang, Kurumov, S.A., Xiaofang Su, Snatenkova, Yu.M., Bukina, Z.M., Kolesnichenko, N.V., Wei Wu, and Khadzhiev, S.N., Petrol. Chem., 2017, vol. 57, no. 12, pp. 1036–1042. https://doi.org/10.1134/S0965544117120179 

    Article  Google Scholar 

  23. Schulz, H. and Wei, M., Top. Catal., 2014, vol. 57, pp. 683–692. https://doi.org/10.1007/s11244-013-0225-9

    Article  CAS  Google Scholar 

  24. Park, I.S., Kwon, M.S., Kang, K.Y., Lee, J.S., and Park, J., Adv. Synth. Catal., 2007, vol. 349, nos. 11–12, pp. 2039–2047. https://doi.org/10.1002/chin.200751048

    Article  CAS  Google Scholar 

  25. Isakov, Ya.I., Isakova, T.A., and Minachev, Kh.M., Neftekhimiya, 1986, vol. 26, no. 3, pp. 335–342.

    CAS  Google Scholar 

  26. Ma, T., Imai, H., Suehiro, Y., Chen, C., Kimura, T., Asaoka, S., and Li, X., Catal. Today, 2014, vol. 228, pp. 167–174. https://doi.org/10.1016/j.cattod.2013.10.037

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was performed using the equipment of the Center for Shared Use “Analytical Center for Problems of Deep Oil Refining and Petroleum Chemistry,” Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

Funding

The study was performed on the base of the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences and was financially supported by the Russian Science Foundation (project no. 17-73-30046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. M. Matieva.

Ethics declarations

A.L. Maksimov is the Editor-in-Chief of Zhurnal Prikladnoi Khimii/Russian Journal of Applied Chemistry. The other authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matieva, Z.M., Snatenkova, Y.M., Kolesnichenko, N.V. et al. Conversion of Dimethyl Ether to a Triptane-Enriched Mixture of Liquid Hydrocarbons: Influence of Modifier and Reaction Conditions. Russ J Appl Chem 93, 1261–1269 (2020). https://doi.org/10.1134/S1070427220080200

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220080200

Keywords:

Navigation