Skip to main content
Log in

Synthesis of Mesoporous Zn-doped TiO2 Nanoparticles by Colloidal Emulsion Aphrons and Their Use for Dye-sensitized Solar Cells

  • Specific Technological Solutions
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Mesoporous structure of Zn-doped TiO2 as a semiconductor of metal oxide material for high-performance dye-sensitized solar cells (DSSCs) was studied. The Zn-doped TiO2 nanoparticles were synthesized by the colloidal emulsion aphrons (CEAs) method supported by sodium lauryl sulfate (SDS) surfactant with adsorption isotherm type IV and H3-type hysteresis loops. The excellent photoconversion efficiency of 10% Zn-doped TiO2 exhibited the overall improvement of solar cell performance. The 10% Zn-doped TiO2 had a high specific surface area (155 cm3/g). It showed a high photoconversion efficiency of about 6.590% with 28% improvement in the photocurrent density (JSC) compared to undoped TiO2 nanoparticles. There was a reduction of the electron recombination and this synergistically improved the electron mobility and charge collection capability through electrodes in the solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Grätzel, M., J. Photochem. Photobiol. C Photochem. Rev., 2003, vol. 4, pp. 145–153. https://doi.org/10.1016/S1389-5567(03)00026-1

    Article  CAS  Google Scholar 

  2. CHEN, X., Chin. J. Catal., 2009, vol. 30, pp. 839–851. https://doi.org/10.1016/S1872-2067(08)60126-6

    Article  CAS  Google Scholar 

  3. Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., and Pettersson, H., Chem. Rev., 2010, vol. 110, pp. 6595–6663. https://doi.org/10.1021/cr900356p

    Article  CAS  PubMed  Google Scholar 

  4. Xu, H., Tao, X., Wang, D.-T., Zheng, Y.-Z., and Chen, J.-F., Electrochimica Acta, 2010, vol. 55, pp. 2280–2285. https://doi.org/10.1016/j.electacta.2009.11.067

    Article  CAS  Google Scholar 

  5. Gao, Z., Wu, Z., Li, X., Chang, J., Wu, D., Ma, P., Xu, F., Gao, S., and Jiang, K., Cryst. Eng. Comm., 2013, vol. 15, pp. 3351–3358. https://doi.org/10.1039/C3CE27098J

    Article  CAS  Google Scholar 

  6. An’amt, M.N., Radiman, S., Huang, N.M., Yarmo, M.A., Ariyanto, N.P., Lim, H.N., and Muhamad, M.R., Ceram. Int., 2010, vol. 36, pp. 2215–2220. https://doi.org/10.1016/j.ceramint.2010.05.027

    Article  CAS  Google Scholar 

  7. Khan, M.A., Shaheer Akhtar, M., and Yang, O.-B., Sol. Energy., 2010, vol. 84, pp. 2195–2201. https://doi.org/10.1016/j.solener.2010.08.008

    Article  CAS  Google Scholar 

  8. Muniz, E.C., Góes, M.S., Silva, J.J., Varela, J.A., Joanni, E., Parra, R., and Bueno, P.R., Ceram. Int., 2011, vol. 37, pp. 1017–1024. https://doi.org/10.1016/j.ceramint.2010.11.014

    Article  CAS  Google Scholar 

  9. Henrist, C., Dewalque, J., Mathis, F., and Cloots, R., Microporous Mesoporous Mater., 2009, vol. 117, pp. 292–296. https://doi.org/10.1016/j.micromeso.2008.07.001

    Article  CAS  Google Scholar 

  10. Crossland, E.J.W., Nedelcu, M., Ducati, C., Ludwigs, S., Hillmyer, M.A., Steiner, U., and Snaith, H.J., Nano Lett., 2009, vol. 9, pp. 2813–2819. https://doi.org/10.1021/nl800942c

    Article  CAS  PubMed  Google Scholar 

  11. Hung, I.-M., Wang, Y., Huang, C.-F., Fan, Y.-S., Han, Y.-J., and Peng, H.-W., J. Eur. Ceram. Soc., 2010, vol. 30, pp. 2065–2072. https://doi.org/10.1016/j.jeurceramsoc.2010.04.015

    Article  CAS  Google Scholar 

  12. Pan, J.H., Zhao, X.S., and Lee, W.I., Environ. Nanotechnol., 2011, vol. 170, pp. 363–380. https://doi.org/10.1016/j.cej.2010.11.040

    Article  CAS  Google Scholar 

  13. Jamwal, D., Kaur, G., Raizada, P., Singh, P., Pathak, D., and Thakur, P., J. Phys. Chem. C., 2015, vol. 119, pp. 5062–5073. https://doi.org/10.1021/jp510428z

    Article  CAS  Google Scholar 

  14. Platz, G., Adv. Mater., 1989, vol. 1, pp. 94–95. https://doi.org/10.1002/adma.19890010312

    Article  Google Scholar 

  15. Dai, Y. and Deng, T., J. Colloid Interface Sci., 2003, vol. 261, pp. 360–365. https://doi.org/10.1016/S0021-9797(03)00056-0

    Article  CAS  PubMed  Google Scholar 

  16. Jauregi, P., Gilmour, S., Varley, J., Chem. Eng. J., 1997, vol. 65, pp. 1–11. https://doi.org/10.1016/S1385-8947(96)03154-3

    Article  CAS  Google Scholar 

  17. Roy, D., Valsaraj, K.T., and Kottai, S.A., Sep. Sci. Technol., 1992, vol. 27, pp. 573–588. https://doi.org/10.1080/01496399208018903

    Article  CAS  Google Scholar 

  18. Deng, T., Dai, Y., and Wang, J., Colloids Surf. Physicochem. Eng. Asp., 2005, vol. 266, pp. 97–105. https://doi.org/10.1016/j.colsurfa.2005.05.067

    Article  CAS  Google Scholar 

  19. Yan, Y., Zhang, N., and Qu, C., Colloids Surf. Physicochem. Eng. Asp., 2005, vol. 264, pp. 139–146. https://doi.org/10.1016/j.colsurfa.2005.04.025

    Article  CAS  Google Scholar 

  20. Supakanapitak, S., Boonamnuayvitaya, V., and Jarudilokkul, S., Mater. Charact., 2012, vol. 67, pp. 83–92. https://doi.org/10.1016/j.matchar.2012.02.018

    Article  CAS  Google Scholar 

  21. Dai, Y., Deng, T., Jia, S., Jin, L., and Lu, F., J. Membr. Sci., 2006, vol. 281, pp. 685–691. https://doi.org/10.1016/j.memsci.2006.04.039

    Article  CAS  Google Scholar 

  22. Chen, C., Li, X., Ma, W., Zhao, J., Hidaka, H., and Serpone, N., J. Phys. Chem. B., 2002, vol. 106, pp. 318–324. https://doi.org/10.1021/jp0119025

    Article  CAS  Google Scholar 

  23. Li, G., Zhang, D., and Yu, J.C., Phys. Chem. Chem. Phys., 2009, vol. 11, pp. 3775–3782. https://doi.org/10.1039/B819167K

    Article  CAS  PubMed  Google Scholar 

  24. Li, M., Zhang, S., Lv, L., Wang, M., Zhang, W., and Pan, B., Chem. Eng. J., 2013, vol. 229, pp. 118–125. https://doi.org/10.1016/j.cej.2013.05.106

    Article  CAS  Google Scholar 

  25. Liu, Y., Sun, X., Tai, Q., Hu, H., Chen, B., Huang, N., Sebo, B., and Zhao, X., J. Power Sources., 2011, vol. 196, pp. 475–481. https://doi.org/10.1016/j.jpowsour.2010.07.031

    Article  CAS  Google Scholar 

  26. Al-juaid, F., Merazga, A., AL-Baradi, A., and Abdel-Wahab, F., Solid State Electron., 2013, vol. 87, pp. 98–103. https://doi.org/10.1016/j.sse.2013.06.007

    Article  CAS  Google Scholar 

  27. Hossein Habibi, M., Askari, E., Habibi, M., and Zendehdel, M., Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 2013, vol. 104, pp. 197–202. https://doi.org/10.1016/j.saa.2012.11.055

    Article  CAS  PubMed  Google Scholar 

  28. Zywitzki, D., Jing, H., Tüysüz, H., and Chan, C.K., J. Mater. Chem. A., 2017, vol. 5, pp. 10957–10967. https://doi.org/10.1039/C7TA01614

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Financial support from the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program (grant no. PHD/0110/2553) to Thanawat Buapuean and Somnuk Jarudilokkul is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somnuk Jarudilokkul.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buapuean, T., Jarudilokkul, S. Synthesis of Mesoporous Zn-doped TiO2 Nanoparticles by Colloidal Emulsion Aphrons and Their Use for Dye-sensitized Solar Cells. Russ J Appl Chem 93, 1229–1236 (2020). https://doi.org/10.1134/S1070427220080169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220080169

Keywords:

Navigation