Skip to main content
Log in

Magnetite–Activated Carbon Nanocomposites: Synthesis, Sorption Properties, and Bioavailability

  • Composite Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Two approaches were considered in searching for an efficient procedure for preparing magnetic nanocomposites based on activated carbon and magnetite nanoparticles by chemical precipitation: preliminary synthesis of magnetite nanoparticles by chemical precipitation from solutions of bi- and trivalent iron salts, followed by introduction of the nanoparticles into the activated carbon matrix, and synthesis of magnetite nanoparticles in the activated carbon matrix. A comparative analysis of the content of magnetite nanoparticles and functional characteristics (textural parameters, sorption capacity, saturation magnetization, and coercive force of the nanocomposites) was made. The ex situ synthesis proved to be the best procedure for preparing nanocomposite sorbents based on activated carbon and magnetite nanoparticles by chemical precipitation, as judged from the yield and functional characteristics of the target product. In biological testing, the maximal harmless (inactive) concentration of the magnetic nanocomposite in the test system with microalgae appeared to be higher by an order of magnitude than that in the test system with ciliates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Li, X., Xu, J., Jiang, G., and Xu, X., Chemosphere, 2011, vol. 85, no. 7, pp. 1204–1209. https://doi.org/10.1016/j.chemosphere.2011.09.005

    Article  CAS  Google Scholar 

  2. Li, X., Xu, J., Jiang, G., Tang, J., and Xu, X., J. Colloid Interface Sci., 2012, vol. 369, pp. 460–469. https://doi.org/10.1016/j.jcis.2011.11.049

    Article  CAS  Google Scholar 

  3. Kalantry, R.R., Jafari, A.J., Esrafili, A., Kakavandi, B., Gholizadeh, A., and Azari, A., Desalinat. Water Treat., 2016, vol. 57, no. 14, pp. 6411–6422. https://doi.org/10.1080/19443994.2015.1011705

    Article  CAS  Google Scholar 

  4. Teresa, J.B., Activated Carbon Surfaces in Environmental Remediation, New York: Elsevier, 2006, p. 572

    Google Scholar 

  5. Wong, K.T., Nguk, C.E., Shaliza, I., Hyunook, K., Yeomin, Y., and Min, J., J. Cleaner Prod., 2015, vol. 115, pp. 337–342. https://doi.org/10.1016/j.jclepro.2015.12.063

    Article  CAS  Google Scholar 

  6. Altintig, E., Altundag, H., Tuzen, M., and Sari, A., Chem. Eng. Res. Des., 2017, vol. 122, pp. 151–163. https://doi.org/10.1016/j.cherd.2017.03.035

    Article  CAS  Google Scholar 

  7. Altintig, E., Onaran, M., Sari, A., Altundag, H., and Tuzen, M., Mater. Chem. Phys., 2018, vol. 220, pp. 313–321. https://doi.org/10.1016/j.matchemphys.2018.05.077

    Article  CAS  Google Scholar 

  8. Gautam, R.K., Banerjee, V.R.S., Sanroman, M.A., and Singh, S.S.K., J. Mol. Liq., 2015, vol. 232, pp. 227–236. https://doi.org/10.1016/j.molliq.2015.09.006

    Article  CAS  Google Scholar 

  9. Kakavandi, B., Kalantary, R.R., Ahmadi, E., Gholami, Torkshavand, Z., and Azizi, M., J. Porous Mater., 2015, vol. 22, no. 4, pp. 1083–1096. https://doi.org/10.1007/s10934-015-9983-z

    Article  CAS  Google Scholar 

  10. Gu, S., Hsieh, C., Gandom, Y.A., Yang, Z., Li, L., Fu, C., and Juang, R., J. Mol. Liq., 2018, vol. 277, pp. 499–505. https://doi.org/10.1016/j.molliq.2018.12.018

    Article  CAS  Google Scholar 

  11. Baghdadi, M., Ghaffari, E., and Aminzadeh, B., J. Environ. Chem. Eng., 2016, vol. 4, no. 3, pp. 3309–3321. https://doi.org/10.1016/j.jece.2016.06.034

    Article  CAS  Google Scholar 

  12. Badi, M.Y., Azari, A., Pasalari, H., Esrafili, A., and Farzadkia, M., J. Mol. Liq., 2018, vol. 261, pp. 146–154. https://doi.org/10.1016/j.molliq.2018.04.019

    Article  CAS  Google Scholar 

  13. Pomogailo, A.D. and Dzhardimalieva, G.I., Metallo-polimernye gibridnye nanokompozity (Metal–Polymer Hybrid Nanocomposites), Moscow: Nauka, 2015.

    Google Scholar 

  14. Karnaukhov, A.P., Adsorbtsiya. Tekstura dispersnykh i poristykh materialov (Adsorption. Texture of Disperse and Porous Materials), Novosibirsk: Nauka, 1993.

    Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 19-33-90149). The magnetic properties of the samples were studied by G.I. Dzhardimalieva within the theme of the government assignment (state registry no. 0089-2029-0012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Kydralieva.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondarenko, L.S., Magomedov, I.S., Terekhova, V.A. et al. Magnetite–Activated Carbon Nanocomposites: Synthesis, Sorption Properties, and Bioavailability. Russ J Appl Chem 93, 1202–1210 (2020). https://doi.org/10.1134/S1070427220080133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220080133

Keywords:

Navigation