Skip to main content
Log in

Frost-Resistant Elastomers with Controllable Microphase Segregation, Based on Epoxy–Ether–Urethane Oligomers

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The influence exerted by the molecular mass of the oligoether and structure of the diisocyanate (starting compounds in the synthesis of epoxy–urethane oligomers) on the thermal behavior and physicomechanical properties of elastomers synthesized from them was studied. The use of isophorone diisocyanate allowed synthesis of materials with a higher degree of microphase segregation compared to 2,4-toluene diisocyanate, which led to the preparation of materials with a lower glass transition point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme
Scheme
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Ling, Z., Hyun, K.J., Jeff, M., Ron, H., and Christopher, W.M., Polymer, 2007, vol. 48, no. 22, pp. 6656–6667.

    Article  Google Scholar 

  2. Mekewi, M.A., Ramadan, A.M., ElDarse, F.M., Abdel Rehim, M.H., Mosa, N.A., and Ibrahim, M.A., Egypt. J. Petrol., 2017, vol. 26, no. 1, pp. 9–15. https://doi.org/10.1016/j.ejpe.2016.02.002

    Article  Google Scholar 

  3. Randall, D. and Lee, S., The Polyurethanes Book, New York: Wiley, 2003.

    Google Scholar 

  4. Prisakariu, C., Polyurethane Elastomers. From Morphology to Mechanical Aspects, Vienna: Springer, 2011.

    Book  Google Scholar 

  5. Sun, W., Yan, X., and Zhu, X., Polym. Bull., 2012, vol. 69, no. 5, pp. 621–633. https://doi.org/10.1007/s00289-012-0775-1

    Article  CAS  Google Scholar 

  6. Edwards, P.A., Striemer, G., and Webster, D.C., JCT Res., 2005, vol. 2, no. 7, pp. 517–527. https://doi.org/10.1007/s11998-005-0011-0

    Article  CAS  Google Scholar 

  7. Yeganeh, H., Mehdipour-Ataei, S., and Ghaffari, M., High Performance Polym., 2008, vol. 20, no. 2, pp. 126–145. https://doi.org/10.1177/0954008307082743

    Article  CAS  Google Scholar 

  8. Bera, M., Gupta, P., and Maji, P.K., React. Funct. Polym., 2019, vol. 139, pp. 60–74. https://doi.org/10.1016/j.reactfunctpolym.2019.03.008

    Article  CAS  Google Scholar 

  9. Elchueva, A.D., Nazipov, M.M., Tabachkov, A.A., and Liakumovich, A.G., Russ. J. Appl. Chem., 2003, vol. 76, no. 3, pp. 487–490. https://doi.org/10.1023/A:1025681524423 

    Article  CAS  Google Scholar 

  10. Makarova, M.A., Slobodinyuk, A.I., Tereshatov, V.V., Volkova, E.R., and Kisel’kov, D.M., Polym. Sci., Ser. D, 2014, vol. 7, no. 3, pp. 166–169. https://doi.org/10.1134/S1995421214030137 

    Article  CAS  Google Scholar 

  11. Strel’nikov, V.N., Senichev, V.Y., Slobodinyuk, A.I., Savchuk, A.V., and Volkova, E.R., Int. J. Polym. Sci., 2019, vol. 2019, article ID 5670439. https://doi.org/10.1155/2019/5670439

  12. Guadagno, L., Vertuccio, L., Sorrentino, A., Raimondo, M., Naddeo, C., Vittoria, V., Iannuzzo, G., Calvi, E., and Russo, S., Carbon, 2009, vol. 47, no. 10, pp. 2419−2430. https://doi.org/10.1016/j.carbon.2009.04.035

    Article  CAS  Google Scholar 

  13. Zhang, S., Ren, Z., He, S., Zhu, Y., and Zhu, C., Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc., 2007, vol. 66, no. 1, pp. 188–193. https://doi.org/10.1016/j.saa.2006.02.041

    Article  CAS  Google Scholar 

  14. Ahn, T.O., Jung, S.U., Jeong, H.M., and Lee, S.W., Appl. Polym. Sci., 1994, vol. 51, no. 1, pp. 43–49. https://doi.org/10.1002/app.1994.070510105

    Article  CAS  Google Scholar 

  15. Senichev, V.Y., Slobodinyuk, A.I., Makarova, M.A., Savchuk, A.V., and Pogoreltsev, E.V., J. Phys.: Conf. Ser., 2019, vol. 1399, no. 4, p. 044060. https://doi.org/10.1088/1742-6596/1399/4/044060

    Article  Google Scholar 

  16. Kothandaraman, H. and Nasar, A.S., Polymer, 1993, vol. 34, no. 3, pp. 610–615. https://doi.org/10.1016/0032-3861(93)90558-R

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was performed using the equipment of the Center for Shared Use “Studies of Materials and Substance,” Perm Federal Research Center, Ural Branch, Russian Academy of Sciences.

Funding

The study was financially supported by the Russian Foundation for Basic Research and by the Perm krai Government (project no. 19-43-590005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Slobodinyuk.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senichev, V.Y., Slobodinyuk, A.I., Slobodinyuk, D.G. et al. Frost-Resistant Elastomers with Controllable Microphase Segregation, Based on Epoxy–Ether–Urethane Oligomers. Russ J Appl Chem 93, 1172–1178 (2020). https://doi.org/10.1134/S1070427220080091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220080091

Keywords:

Navigation