Skip to main content
Log in

Potassium–Sulfur System: Thermodynamic Properties, Electrochemical Studies, and Prospects for Use in Chemical Current Sources

  • Reviews
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

In the first two decades of the XXI century, there has been a significant increase in the number of published papers dealing with the improvement of existing and development of new chemical current sources (CCSs) containing alkali metals. Large-scale propduction of lithium-ion batteries started in 1990–1991. Since that time, new anode and cathode materials and electrolytes with useful properties have been suggested for these batteries in many hundreds and, possibly, thousands of papers. Nobel Prize in chemistry was awarded in 2019 for fundamental studies in this field, performed in the 1970–1980s. Since the beginning of the XXI century, numerous papers deal also with sodium-ion batteries and rechargeable CCSs that are based on lithium–chalcogen and sodium–chalcogen systems and are suitable for use at room temperature. Since 2013, increasing number of papers deal with potassium-ion batteries and potassium–chalcogen and potassium–oxygen systems (72 papers on rechargeable potassium batteries have been published in 2017). In this small review, I consider thermodynamic and electrochemical studies of the potassium–sulfur system, performed in different periods, and also recent papers on CCSs based on the potassium–sulfur system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Manthiram, A., Fu, Y., Chung, S.-H., Zu, C., and Su, Y.-S., Chem. Rev., 2014, vol. 114, pp. 11751–11787.

    Article  CAS  PubMed  Google Scholar 

  2. Manthiram, A., Chung, S.-H., and Zu, C., Adv. Mater., 2015, vol. 27, pp. 1980–2006.

    Article  CAS  PubMed  Google Scholar 

  3. Nagao, M., Imade, Y., Narisawa, H., Kobayashi, T., Watanabe, R., Yokoi, T., Tatsumi, T., and Kanno, R., J. Power Sources, 2013, vol. 222, pp. 237–242.

    Article  CAS  Google Scholar 

  4. Rosenman, A., Markevich, E., Salitra, G., Aurbach, D., Garuch, A., and Chesnau, F.F., Adv. Energy Mater., 2015, vol. 5, article no. 1500212, pp. 1–21.

    Article  CAS  Google Scholar 

  5. She, Z.W., Sun, Y., Zhang, Q., and Cui, Y., Chem. Soc. Rev., 2016, vol. 45, pp. 5605–5634.

    Article  Google Scholar 

  6. Adelheim, P., Hartmann, P., Bender, C.L., Busche, M., Eufinger, C., and Janek, J., Beilstein J. Nanotechnol., 2015, vol. 6, pp. 1016–1055.

    Article  CAS  Google Scholar 

  7. Morachevskii, A.G., Popovich, A.A., and Demidov, A.I., Nauch.-Tekh. Vedom. Sankt-Peterb. Politekh. Univ., 2017, vol. 23, no. 4, pp. 110–117.

    Google Scholar 

  8. Morachevskii, A.G. and Demidov, A.I., Russ. J. Appl. Chem., 2017, vol. 90, no. 5, pp. 651–675.

    Google Scholar 

  9. Morachevskii, A.G. and Demidov, A.I., Termodinamika i elektrokhimiya sistem litii–khal’kogen i natrii–khal’kogen (Thermodynamics and Electrochemistry of Lithium–Chalcogen and Sodium–Chalcogen Systems), St. Petersburg: Lan’, 2019.

    Google Scholar 

  10. Kim, H., Kim, J.C., Bianchini, M., Seo, D.-H., Rodriguez-Garcia, J., and Ceder, G., Adv. Energy Mater., 2017, article no. 1702384, pp. 1–15.

    Google Scholar 

  11. Hwang, J.-Y., Myung, S.-T., and Sun, Y.-K., Adv. Funct. Mater., 2018, article no. 1802938, pp. 1–45.

    Google Scholar 

  12. Zhang, W., Liu, Y., and Guo, Z., Sci. Adv., 2019, vol. 5, pp. 1–13.

    Google Scholar 

  13. Sangster, J. and Pelton, A.D., J. Phase Equilib., 1997, vol. 18, no. 1, pp. 82–88.

    Article  CAS  Google Scholar 

  14. Morachevskii, A.G., Beloglazov, I.N., and Kasymbaev, B.A., Kalii: svoistva, proizvodstvo, primenenie (Potassium: Properties, Production, Use), Moscow: Ruda i Metally, 2000.

    Google Scholar 

  15. Morachevskii, A.G. and Maiorova, E.A., Russ. J. Appl. Chem., 2002, vol. 75, no. 10, pp. 1580–1584.

    Article  CAS  Google Scholar 

  16. Janz, G.J. and Rogers, D.J., J. Chem. Eng. Data, 1983, vol. 28, no. 3, pp. 331–335.

    Article  CAS  Google Scholar 

  17. Termicheskie konstanty veshchestv (Thermal Constants of Substances), Glushko, V.P., Ed., Moscow: VINITI, 1981, issue 10, part 2.

  18. Letoffe, J.-M., Joly, R.D., Thoureu, J., Perachon, G., and Bousquet, J., J. Chim. Phys., 1974, vol. 71, no. 3, pp. 427–430.

    Article  CAS  Google Scholar 

  19. Johnson, G.K. and Steele, W.V., J. Chem. Thermodyn., 1981, vol. 13, no. 10, pp. 985–990.

    Article  CAS  Google Scholar 

  20. Latimer, V.M., The Oxidation States of the Elements and Their Potentials in Aqueous Solutions, New York: Ptentice-Hall, 1938.

    Google Scholar 

  21. Morachevskii, A.G., Sladkov, I.B., and Firsova, E.G., Termodinamicheskie raschety v khimii i metallurgii (Thermodynamic Calculations in Chemistry and Metallurgy), St. Petersburg: Lan’, 2018.

    Google Scholar 

  22. Voronin, G.F., Zh. Fiz. Khim., 1970, vol. 44, no. 12, pp. 3013–3017.

    CAS  Google Scholar 

  23. Bousquet, J., Letoffe, J.-M., and Diot, M., J. Chim. Phys., 1974, vol. 71, no. 9, pp. 1180–1184.

    Article  CAS  Google Scholar 

  24. Diot, M., Letoffe, J.-M., Prost, M., and Bousquet, J., Bull. Soc. Chim. Fr., 1972, no. 12, pp. 4490–4493.

    Google Scholar 

  25. Maiorova, E.A., Thermodynamic properties of dilute solutions of sodium or potassium in various liquid metals or chalcogens, Cand. Sci. Dissertation, Leningrad, 1977.

  26. Gerasimov, Ya.I. and Geiderikh, V.A., Termodinamika rastvorov (Thermodynamics of Solutions), Moscow: Mosk. Univ., 1980.

    Google Scholar 

  27. Crosbie, G.M., J. Electrochem. Soc., 1982, vol. 129, no. 12, pp. 2707–2711.

    Article  CAS  Google Scholar 

  28. Morachevskii, A.G., Sharivker, V.S., Klebanov, E.B., and Maiorova, E.A., J. Appl. Chem. USSR, 1988, vol. 61, no. 10, pp. 2117–2119.

    Google Scholar 

  29. Cleaver, B., Davies, A.J., and Hames, M.D., Electrochim. Acta, 1973, vol. 18, no. 10, pp. 719–726.

    Article  CAS  Google Scholar 

  30. Morachevskii, A.G., Klebanov, E.B., Sharivker, V.S., and Erofeeva, G.I., Elektrokhimiya, 1989, vol. 25, no. 10, pp. 1392–1393.

    CAS  Google Scholar 

  31. Klebanov, E.B., Shibalovskaya, I.I., and Morachevskii, A.G., Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 1987, no. 4, pp. 35–37.

    Google Scholar 

  32. Morachevskii, A.G., Voronin, G.F., Geiderikh, V.A., and Kutsenok, I.B., Elektrokhimicheskie metody issledovaniya v termodinamike metallicheskikh sistem (Electrochemical Methods of Investigation in Thermodynamics of Metal Systems), Moscow: Akademkniga, 2003.

    Google Scholar 

  33. Sangster, J. and Pelton, A.D., J. Phase Equilib., 1993, vol. 14, no. 4, pp. 510–514.

    Article  CAS  Google Scholar 

  34. Morachevskii, A.G. and Bochagina, E.V., Russ. J. Appl. Chem., 2000, vol. 73, no. 11, pp. 1875–1879. https://doi.org/10.1134/S107042721403001X

    Article  CAS  Google Scholar 

  35. Morachevskii, A.G. and Demidov, A.I., Termodinamika i elektrokhimiya splavov sur’my so shchelochnymi metallami (Thermodynamics and Electrochemistry of Antimony Alloys with Alkali Metals), St. Petersburg: Politekh-Press, 2018.

    Google Scholar 

  36. Schlesinger, M.E., Chem. Rev., 2013, vol. 113, pp. 8066–8092. https://doi.org/10.1021/cr00102a003

    Article  CAS  PubMed  Google Scholar 

  37. Zhao, Q., Hu, Y., Zhang, K., and Chen, J., Inorg. Chem., 2014, vol. 53, pp. 9000–9005.

    Article  CAS  PubMed  Google Scholar 

  38. Lu, X., Bowden, M.E., Sprenkle, V.L., and Liu, J., Adv. Mater., 2015, vol. 27, pp. 5915–5922.

    Article  CAS  PubMed  Google Scholar 

  39. Xue, L., Gao, H., Zhou, W., Xin, S., Park, K., Li, Y., and Goodenough, J., Adv. Mater., 2016, vol. 28, pp. 9608–9612.

    Article  CAS  PubMed  Google Scholar 

  40. Xue, L., Li, Y., Gao, H., Zhou, W., Lu, X., Kaveevivitchai, A., Manthiram, A., and Goodenough, J.B., J. Am. Chem. Soc., 2017, vol. 139, pp. 2164–2167.

    Article  CAS  PubMed  Google Scholar 

  41. Liu, Y., Wang, W., Wang, J., Zhang, Y., Zhu, Y., Chen, Y., Fu, L., and Wu, Y., Chem. Commun., 2018, vol. 54, pp. 2288–2291.

    Article  CAS  Google Scholar 

  42. Hwang, J.-Y., Kim, H.M., Yoon, C.S., and Sun, Y.-K., ACS Energy Lett., 2018, vol. 3, no. 3, pp. 540–541.

    Article  CAS  Google Scholar 

  43. Hwang, J.-Y., Kim, H.M., and Sun, Y.-K., J. Mater. Chem. A, 2018, vol. 6, no. 30, pp. 14587–14593.

    Article  CAS  Google Scholar 

  44. Yu, X. and Manthiram, A., Energy Storage Mater., 2018, vol. 15, pp. 368–373.

    Article  Google Scholar 

  45. Gu, S., Xiao, N., Wu, F., Bai, Y., Wu, C., and Wu, Y., ACS Energy Lett., 2018, vol. 3, pp. 2858–2864.

    Article  CAS  Google Scholar 

  46. Lai, N.-Ñ., Cong, G., and Lu, Y.-C., J. Mater. Chem. A, 2019, vol. 7, no. 36, pp. 20584–20589.

    Article  CAS  Google Scholar 

  47. Ma, S., Zuo, P., Zhang, H., Yu, Z., Cui, C., He, M., and Yin, G., Chem. Commun., 2019, vol. 55, pp. 5267–5270.

    Article  CAS  Google Scholar 

  48. Zhang, Y., Lou, J., Shuai, Y., Chen, K., He, X., Wang, Y., Li, N., Zhang, Z., and Gan, F., Mater. Lett., 2019, vol. 242, pp. 5–8.

    Article  CAS  Google Scholar 

  49. Xiong, P., Han, X., Zhao, X., Bai, P., Liu, Y., Sun, J., and Xu, Y., ACS Nano, 2019, vol. 13, pp. 2536–2543.

    CAS  PubMed  Google Scholar 

  50. Wang, L., Bao, J., Liu, Q., and Sun, C.-F., Energy Storage Mater., 2019, vol. 18, pp. 470–475.

    Article  Google Scholar 

  51. Ma, R., Fan, L., Wang, J., and Lu, B., Electrochim. Acta, 2019, vol. 293, pp. 191–198.

    Article  CAS  Google Scholar 

  52. Peng, H.-J., Huang, J.-Q., and Zhang, Q., Chem. Soc. Rev., 2017, vol. 46, pp. 5237–5288.

    Article  CAS  PubMed  Google Scholar 

  53. Medenbach, L. and Adelheim, P., Top. Curr. Chem., 2017, vol. 375, article no. 81, pp. 1–25.

  54. Eftekhari, A., Jian, Z., and Ji, X., ACS ASC Appl. Mater. Interfaces, 2017, vol. 9, pp. 4404–4419.

    Article  CAS  Google Scholar 

  55. Zu, C.-X. and Li, H., Energy Environ. Sci., 2011, vol. 4, pp. 2614–2624.

    Article  CAS  Google Scholar 

  56. Hueso, K.B., Armand, M., and Rojo, T., Energy Environ. Sci., 2013, vol. 6, pp. 734–749.

    Article  CAS  Google Scholar 

  57. Kim, H., Jeong, G., Kim, Y.U., Kim, J.U., Park, C.M., and Sohn, H.J., Chem. Soc. Rev., 2013, vol. 42, no. 23, pp. 9011–9034.

    Article  CAS  PubMed  Google Scholar 

  58. Kumar, D., Kumar Rajouria, S., Kuhar, S.B., and Kanchan, D.K., Solid State Ionics, 2017, vol. 312, pp. 8–16.

    Article  CAS  Google Scholar 

  59. Morachevskii, A.G., Shesterkin, I.A., Busse-Machukas, V.B., Klebanov, E.B., and Kozin, L.F., Natrii. Svoistva, proizvodstvo, primenenie (Sodium. Properties, Production, Use), Morachevskii, A.G., Ed., St. Petersburg: Khimiya, 1992.

    Google Scholar 

  60. Schipper, F. and Aurbach, D., Russ. J. Electrochem., 2016, vol. 52, no. 12, pp. 1095–1121.

    Article  CAS  Google Scholar 

  61. Yin, Y.-X., Xin, S., Guo, Y.-G., and Wan, L.-J., Angew. Chem. Int. Ed., 2013, vol. 52, no. 23, pp. 13186–13200.

    Article  CAS  Google Scholar 

  62. Lin, Z. and Liang, C., J. Mater. Chem. A, 2015, vol. 3, pp. 936–958.

    Article  CAS  Google Scholar 

  63. Svoistva elementov: Spravochnoe izdanie (Properties of the Elements: Handbook), Drits, M.E., Ed., Moscow: Metallurgiya, 1997.

    Google Scholar 

  64. Morachevskii, A.G., Fiziko-khimiya retsiklinga svintsa (Physical Chemistry of Lead Recycling), St. Petersburg: Politekh. UNiv., 2009.

    Google Scholar 

  65. Morachevskii, A.G., Nauch.-Tekh. Vedom. Sankt-Peterb. Gos. Tekh. Univ., 2014, no. 4, pp. 127–137.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Morachevskii.

Ethics declarations

A.G. Morachevskii is the member of the Editorial Board of Zhurnal Prikladnoi Khimii/Russian Journal of Applied Chemistry. The authors declare that they have no conflicts of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morachevskii, A.G. Potassium–Sulfur System: Thermodynamic Properties, Electrochemical Studies, and Prospects for Use in Chemical Current Sources. Russ J Appl Chem 93, 1103–1114 (2020). https://doi.org/10.1134/S1070427220080017

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220080017

Keywords:

Navigation