Skip to main content
Log in

Preparation and Structural and Electrochemical Characteristics of a Carbon-Containing Material Based on Aspen Bark Modified with Zinc and Iron Chlorides

  • Technologies for Production of Novel Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The possibility of using aspen bark modified with zinc and iron chlorides for preparing highly porous materials with specific properties was examined. The effect of the treatment temperature and modifiers on the structural and electrochemical parameters of the carbon-containing product was revealed. Carbonization of aspen bark modified with ZnCl2 yielded a material with the specific surface area of up to 1350 m2 g–1, containing a crystalline zinc oxide phase. The material obtained using a mixture of aspen bark with FеCl3 had the specific surface area of up to 300 m2 g–1 and contained magnetite and maghemite. Modification of the bark with zinc and iron chlorides simultaneously yielded a highly porous product with ferromagnetic properties. The apparent capacitance of the samples carbonized at 800°С was found to be 150–400 F g–1. The possibility of using these materials in electrochemical devices was suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Soboleva, S.V., Chentsova, L.I., and Voronin, V.M., Pererabotka kory osiny s polucheniem biologicheski aktivnykh veshchestv i kormovykh produktov: monografiya (Processing of Aspen Bark with Preparation of Biologically Active Compounds and Forage Products: Monograph), Krasnoyarsk: Sib. Gos. Tekh. Univ., 2013.

    Google Scholar 

  2. Kharouk, V.I., Middleton, E.M., Spencer, S.L., Rock, B.N., and Williams, D.L., Water,Air Soil Pollut., 1995, vol. 82, pp. 483–497.

    Article  CAS  Google Scholar 

  3. Pasztory, Z., Mohacsine, I.R., Gorbacheva, G., and Borcsok, Z., Bioresources, 2016, vol. 11, no. 3, pp. 7859–7888.

    Article  Google Scholar 

  4. Soboleva, S.V. and Litovka, Yu.A., Khim. Rast. Syr’ya, 2011, vol. 2, pp. 83–86.

    Google Scholar 

  5. Marsh, H. and Rodriguez-Reinoso, F., Activated Carbon, Elsevier, 2006, pp. 3–536.

    Google Scholar 

  6. Tsyganova, S.I., Romanchenko, A.S., Fetisova, O.Yu., Mazurova, E.V., and Bondarenko, G.N., Zh. Sib. Fed. Univ., Khimiya, 2018, vol. 2, no. 11, pp. 281–290. https://doi.org/10.17516/1998-2836-0075

    Article  Google Scholar 

  7. Tsyganova, S.I., J. Wood Sci. Technol., 2013, vol. 47, pp. 77–82. https://doi.org/10.1007/s00226-012-0490-y

    Article  CAS  Google Scholar 

  8. Swarnalatha, S., Kumar, A.G., and Sekaran, G., J. Porous Mater., 2009, vol. 16, pp. 239–245. https://doi.org/10.1007/s10934-008-9192-0

    Article  CAS  Google Scholar 

  9. Xu, C. and Strømme, M., Nanomaterials, 2019, vol. 9, no. 1:103, pp. 1–13. https://doi.org/10.3390/nano9010103

    Article  CAS  Google Scholar 

  10. Peng, X., Zhang, L., Chen, Z., Zhong, L., Zhao, D., Chi, X., Zhao, X., Li, L., Lu, L., Leng, K., Liu, C., Liu, W., Tang, W., and Loh, K.P., Adv. Mater., 2019, vol. 31, pp. 1–7. https://doi.org/10.1002/adma.201900341

    Article  CAS  Google Scholar 

  11. Zhang, J. and Zhang, W., Mater. Sci.(Medziagotyra), 2014, vol. 20, no. 4, pp. 474–478. https://doi.org/10.5755/j01.ms.20.4.6400

    Article  Google Scholar 

  12. Mikova, N.M., Fetisova, O.Yu., Ivanov, I.P., Pavlenko, N.M., and Chesnokov, N.V., Khim. Rast. Syr’ya, 2017, vol. 4, pp. 53–64. https://doi.org/10.14258/jcprm.2017042018

    Article  CAS  Google Scholar 

  13. Tsyganova, S.I., Romanchenko, A.S., Bondarenko, G.N., and Fetisova, O.Yu., Russ. J. Appl. Chem., 2018, vol. 91, no. 2, pp. 330−336. https://doi.org/10.1134/S1070427218020258

    Article  CAS  Google Scholar 

  14. Erabee, I.K., Ahsan, A., Zularisam, A.W., Idrus, S., Daud, N.N.N., Arunkumar, T., Sathyamurthy, R., and Al-Rawajfeh, A.E., Eng. J., 2017, vol. 21, no. 5, pp. 1−15. https://doi.org/10.4186/ej.2017.21.5.1

    Article  CAS  Google Scholar 

  15. Mohapatra, D., Parida, S., Badrayyana, S., and Singh, B.K., Appl. Mater. Today, 2017, vol. 7, pp. 212–221. https://doi.org/10.1016/j.apmt.2017.03.006

    Article  Google Scholar 

  16. Wang, H., Yu, S., and Xu, B., Chem. Commun., 2016, vol. 52, no. 77, pp. 11512−11515. https://doi.org/10.1039/C6CC05911B

    Article  CAS  Google Scholar 

  17. Guetteche, Y., Bordjiba, T., Bouguerne, B., Nabeti, Z., Mahmoudi, O., and Lemzademi, A., Int. J.Electrochem. Sci., 2017, vol. 12, pp. 1874–1884. https://doi.org/10.20964/2017.03.37

    Article  CAS  Google Scholar 

  18. Borgohain, R., Li, J., Selegue, J.P., and Cheng, Y.-T., J. Phys. Chem. C, 2012, pp. 15068−15075. https://doi.org/10.1021/jp301642s

    Article  CAS  Google Scholar 

  19. Banerjee, A., Gokhale, R., Bhatnagar, S., Jog, J., Bhardwaj, M., and Lefez, B., J. Mater. Chem., 2012, vol. 22, pp. 19694−9699. https://doi.org/10.1039/C2JM33798C

    Article  CAS  Google Scholar 

  20. Reiner, T., Jantke, D., Marziale, A.N., Raba, A., and Eppinger, J., Chem. Open, 2013, vol. 2, pp. 50−54. https://doi.org/10.1002/open.201200044

    Article  CAS  Google Scholar 

  21. Zhi, M., Xiang, C., Li, J., Li, M., and Wu, N., Nanoscale, 2013, vol. 5, pp. 72−88. https://doi.org/10.1039/C2NR32040A

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, R.D.J., Li, J.Q.Z., Wang, C., and Chen, M., ACS Appl. Mater. Interfaces, 2018, vol. 10, no. 16, pp. 13470–13478. https://doi.org/10.1021/acsami.8b00353

    Article  CAS  PubMed  Google Scholar 

  23. Raghu, M., Nanostructured Arrays for Sensing and Energy Storage Applications, Doctoral Dissertation, Univ. of Kentucky, 2011. pp. 1–153.

  24. Pandey, K.K., J. Appl. Polym. Sci., 1999, vol. 71, pp. 1969–1975. https://doi.org/10.1002/(SICI)1097-4628(19990321)71:12>1969::AID-APP6<3.0.CO;2-D

    Article  CAS  Google Scholar 

  25. Tsyganova, S.I., Patrushev, V.V., Bondarenko, G.N., and Velikanov, A.M., Zh. Sib. Fed. Univ., Khimiya, 2011, vol. 4, no. 4, pp. 388−398.

    Google Scholar 

  26. Lufrano, F. and Staiti, P., Int. J. Electrochem. Sci., 2010, vol. 5, pp. 903–916.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Krasnoyarsk Regional Center for Shared Use, Siberian Branch, Russian Academy of Sciences, for the assistance in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Tsyganova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsyganova, S.I., Romanchenko, A.S., Fetisova, O.Y. et al. Preparation and Structural and Electrochemical Characteristics of a Carbon-Containing Material Based on Aspen Bark Modified with Zinc and Iron Chlorides. Russ J Appl Chem 93, 672–678 (2020). https://doi.org/10.1134/S1070427220050079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220050079

Keywords:

Navigation