Skip to main content
Log in

Electrophysical Properties of Composites Based on Polyethylene Modified with Multi-Walled Carbon Nanotubes with High Content of Fe–Co-Catalyst

  • Composite Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The effect of the residual catalyst for the synthesis of multi-walled carbon nanotubes (MWCNTs) on the electrophysical properties of MWCNT–polyethylene composites produced by melt mechanical mixing was studied. The residual catalyst content was varied by changing the MWCNTs synthesis time. The nanotubes used in the work were characterized using transmission and scanning electron microscopy, atomic emission analysis, X-ray phase analysis, and magnetic permeability measurements. The structure of the synthesized composites was studied using optical and scanning electron microscopy. The dependences of the specific magnetization on the applied magnetic field, bulk electrical conductivity on the volumetric content of the filler in the composite, and the frequency dependences of the reflection, transmission, and absorption of electromagnetic radiation in the range 0.01–18 GHz were obtained. It was established that the obtained composites are characterized by a uniform distribution of nanotubes in the polymer matrix, and the dependence of the bulk electrical conductivity on the content of MWCNTs in the composite has a percolation character. Variation in the synthesis time of nanotubes allows producing MWCNTs with a high content of ferromagnetic particles, which are an alloy close in stoichiometry to the composition of the active component of the catalyst. It was shown that the use of composites modified with MWCNTs with a high content of residual catalyst is more effective for absorbing electromagnetic radiation due to an increase in their magnetic losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. De Volder, M.F.L., Tawfick, S.H., Baughman, R.H., and Hart, A.J., Science, 2013, vol. 339, no. 6119, pp. 535–539. https://doi.org/10.1126/science.1222453

    Article  CAS  PubMed  Google Scholar 

  2. Popov, V., Mater. Sci. Eng.: R: Reports, 2004, vol. 43, no. 3, pp. 61–102. https://doi.org/10.1016/j.mser.2003.10.001

    Article  CAS  Google Scholar 

  3. Feller, J.-F., Castro, M., and Kumar, B., Polymer–Carbon Nanotube Composites, Elsevier, 2011.

    Google Scholar 

  4. Bauhofer, W. and Kovacs, J.Z., Composites Sci. Technol., 2009, vol. 69, no. 10, pp. 1486–1498. https://doi.org/10.1016/j.compscitech.2008.06.018

    Article  CAS  Google Scholar 

  5. Spitalsky, Z., Tasis, D., Papagelis, K., and Galiotis, C., Progress Polym. Sci., vol. 35, no. 3, pp. 357–401. https://doi.org/10.1016/j.progpolymsci.2009.09.003

    Article  CAS  Google Scholar 

  6. Gong, S., Zhu, Z.H., and Meguid, S.A., Polymer, 2015, vol. 56, pp. 498–506. https://doi.org/10.1016/j.polymer.2014.11.038

    Article  CAS  Google Scholar 

  7. González, M., Pozuelo, J., and Baselga, J., Chem. Record., 2018, vol. 18, nos. 7–8, pp. 1000–1009. https://doi.org/10.1002/tcr.201700066

    Article  CAS  Google Scholar 

  8. Li, J., Lu, W., Suhr, J., Chen, H., Xiao, J.Q., and Chou, T.-W., Sci. Reports, 2017, vol. 7, no. 2349, p. 110. https://doi.org/10.1038/s41598-017-02639-7

    Article  CAS  Google Scholar 

  9. Wang, G., Gao, Z., Wan, G., Lin, S., Yang, P., and Qin, Y., Nano Research, 2014, vol. 7, no. 5, pp. 704–716. https://doi.org/10.1007/s12274-014-0432-0

    Article  CAS  Google Scholar 

  10. Cheng, H., Wei, S., Ji, Y., Zhai, J., Zhang, X., Chen, J., and Shen, C., Composites. Part A: Appl. Sci. Manufacturing, 2019, vol. 121, pp. 139–148. https://doi.org/10.1016/j.compositesa.2019.03.019

    Article  CAS  Google Scholar 

  11. Liu, Y., Lu, M., Wu, K., Yao, S., Du, X., Chen, G., Zhang, Q., Liang, L., and Lu, M., Composites Sci. Technol., 2019, vol. 174, pp. 1–10. https://doi.org/10.1016/j.compscitech.2019.02.005

    Article  CAS  Google Scholar 

  12. Lee, S.-H., Kang, D., and Oh, I.-K., Carbon, 2017, vol. 111, pp. 248–257. https://doi.org/10.1016/j.carbon.2016.10.003

    Article  CAS  Google Scholar 

  13. Sankaran, S., Deshmukh, K., Ahamed, M.B., Khadheer Pasha, S.K., Appl. Sci. Manufacturing, 2018, vol. 114, pp. 49–71. https://doi.org/10.1016/j.compositesa.2018.08.006

    Article  CAS  Google Scholar 

  14. Abbasi, H., Antunes, M., Velasco, J.I., Progress Mater. Sci., 2019, vol. 103, pp. 319–373. https://doi.org/10.1016/j.pmatsci.2019.02.003

    Article  CAS  Google Scholar 

  15. Wang, C., Murugadoss, V., Kong, J., He, Z., Mai, X., Shao, Q., Chen, Y., Guo, L., Liu, C., Angaiah, S., and Guo, Z., Carbon, 2018, vol. 140, pp. 696–733. https://doi.org/10.1016/j.carbon.2018.09.006

    Article  CAS  Google Scholar 

  16. Kodama, R.H., J. Magnetism Magnetic Mater., 1999, vol. 200, no. 1, pp. 359–372. https://doi.org/10.1016/S0304-8853(99)00347-9

    Article  CAS  Google Scholar 

  17. Dosoudil, R., Usakova, M., Franek, J., Slama, J., and Gruskova, A., IEEE Transactions on Magnetics, 2010, vol. 46, no. 2, pp. 436–439. https://doi.org/10.1109/TMAG.2009.2033347

    Article  CAS  Google Scholar 

  18. Liu, W., Zhong, W., Jiang, H.Y., Tang, N.J., Wu, X.L., and Du, W.Y., Eur. Phys. J. B—Condensed Matter and Complex Systems, 2005, vol. 46, no. 4, pp. 471–474. https://doi.org/10.1140/epjb/e2005-00276-2

    Article  CAS  Google Scholar 

  19. Zhang, X.F., Guan, P.F., and Dong, X.L., Appl. Phys. Lett., 2010, vol. 97, no. 033107, p. 13. https://doi.org/10.1063/1.3464975

    Article  CAS  Google Scholar 

  20. Liu, X.G., Li, B., Geng, D.Y., Cui, W.B., Yang, F., Xie, Z.G., Kang, D.J., and Zhang, Z.D., Carbon, 2009, vol. 47, no. 2, pp. 470–474. https://doi.org/10.1016/j.carbon.2008.10.028

    Article  CAS  Google Scholar 

  21. Song, N.-N., Yang, H.-T., Liu, H.-L., Ren, X., Ding, H.-F., Zhang, X.-Q., and Cheng, Z.-H., Sci. Reports, 2013, vol. 3, no. 3161, p. 15. https://doi.org/10.1038/srep03161

    Article  Google Scholar 

  22. Song, N.-N., Ke, Y.-J., Yang, H.-T., Zhang, H., Zhang, X.-Q., Shen, B.-G., and Cheng, Z.-H., Sci. Reports, 2013, vol. 3, no. 2291, pp. 15. https://doi.org/10.1038/srep02291

    Article  Google Scholar 

  23. Usoltseva, A., Kuznetsov, V., Rudina, N., Moroz, E., Haluska, M., Roth, S., Physica Status Solidi B, 2007, vol. 244, no. 11, pp. 3920–3924. https://doi.org/10.1002/pssb.200776143

    Article  CAS  Google Scholar 

  24. Andreev, A.S., Krasnikov, D.V., Zaikovskii, V.I., Cherepanova, S.V., Kazakova, M.A., Lapina, O.B., Kuznetsov, V.L., and d’Espinose de Lacaillerie, J., J. Catal., 2018, vol. 358, pp. 62–70. https://doi.org/10.1016/j.jcat.2017.11.025

    Article  CAS  Google Scholar 

  25. Suslyaev, V.I., Kuznetsov, V.L., Zhuravlev, V.A., Mazov, I.N., Korovin, E.Yu., Moseenkov, S.I., and Dorozhkin, K.V., Russ. Phys. J., 2013, vol. 55, no. 8, pp. 970–976. https://doi.org/10.1007/s11182-013-9909-7

    Article  CAS  Google Scholar 

  26. RF Patent 2373995 (Publ. 2009).

  27. Kuznetsov, V.L., Krasnikov, D.V., Schmakov, A.N., and Elumeeva, K.V., Physica Status Solidi B, 2012, vol. 249, no. 12, pp. 2390–2394. https://doi.org/10.1002/pssb.201200120

    Article  CAS  Google Scholar 

  28. Li, Q., Kartikowati, C.W., Horie, S., Ogi, T., Iwaki, T., and Okuyama, K., Sci. Reports, 2017, vol. 7, no. 9894, p. 17. https://doi.org/10.1038/s41598-017-09897-5

    Article  CAS  Google Scholar 

  29. Nascimento, V.P., Passamani, E.C., Takeuchi, A.Y., Larica, C., and Nunes, E., J. Phys.: Condensed Matter., 2001, vol. 13, no. 4, pp. 665–682. https://doi.org/10.1088/0953-8984/13/4/313

    Article  CAS  Google Scholar 

  30. Eletskii, A.V., Knizhnik, A.A., Potapkin, B.V., and Kenny, J.M., Physics-Uspekhi, 2015, vol. 58, no. 3, pp. 209–251. https://doi.org/10.3367/UFNe.0185.201503a.0225

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation, project no. 17-73-20293.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Moseenkov.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moseenkov, S.I., Kuznetsov, V.L., Zavorin, A.V. et al. Electrophysical Properties of Composites Based on Polyethylene Modified with Multi-Walled Carbon Nanotubes with High Content of Fe–Co-Catalyst. Russ J Appl Chem 93, 586–594 (2020). https://doi.org/10.1134/S107042722004014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042722004014X

Keywords:

Navigation