Skip to main content
Log in

Oxidative Dehydrogenation of Ethylbenzene to Styrene on an Exhausted Aluminum Chromium Catalyst

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The catalysts were synthesized based on the spent industrial aluminum-chromium catalyst used in the hydrocarbon dehydrogenation by SABIC Co., and the catalysts were modified with copper and potassium carbonate. The catalysts were tested in the oxidative dehydrogenation of ethylbenzene to styrene. It was found that the prepared and modified 1 wt % Cu catalyst, upon the conversion of ethylbenzene to styrene in the presence of O2, exhibits an activity of 53% with a selectivity for styrene of 85%. It was shown that the introduction of carbon dioxide into the reaction zone leads to an increase in activity to 60–63%, and selectivity to 89–91%. The stability of the functioning of a copper-promoted catalyst and the effect of water vapor on the process were studied. It was found that under conditions close to industrial, within 100 h, a stable conversion of the mixture (ethylbenzene : O2 = 9 : 1) : H2O = 4 : 1 with a selectivity for styrene of at least 90% at a space velocity of 2 h–1 (at liquid ethylbenzene).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Cavani, F. and Trifiro, F., Appl. Catal. A: General., 1995, vol. 133, pp. 219–239. https://doi.org/10.1016/0926-860X(95)00218-9

    Article  CAS  Google Scholar 

  2. Samuel, P.D.M., Anderson, L.P., Tiago, P.B., Antoninho, V., Josue, M.F., Alcineia, C.O., J. Mol. Catal. A: Chemical., 2011, vol. 348, pp. 1–13. https://doi.org/10.1016/j.molcata.2011.07.013

    Article  CAS  Google Scholar 

  3. Venkata, R.B.G., Siva, S.E., Suresh, M., Ramudu, P., Said, P., David, R.B., Seetha, R.R.K., Appl. Petrochem. Res., 2016, vol. 6, pp. 427–437. https://doi.org/10.1039/B304825J

    Article  Google Scholar 

  4. Itika, K., Gurram, V.R.B., Jayesh, T.B., Kamaraju, S.R.R., and Bhari, M.N., J. CO2 Utilization, 2017, vol. 18, pp. 309–317. https://doi.org/10.1021/acscatal.5b01519

    Article  CAS  Google Scholar 

  5. Benjaram, M.R., Dae-Soo, H., Nanzhe, J., Park, S.E., Catal. Surv. Asia, 2008, vol. 12, pp. 56–69. https://doi.org/10.1007/s10563-007-9039-8

    Article  CAS  Google Scholar 

  6. Badstube, T., Papp, H., Dziembaj, R., Kustrowski, P., Appl. Catal. A. General, 2000, vol. 204, pp. 153–165. https://doi.org/10.1016/S0926-860X(00)00514-7

    Article  CAS  Google Scholar 

  7. Nederlof, Ch., Zarubina, V., Ignacio, V.M.C., Erik, H.J.H., Talebi, H., Kapteijn, F., Makkee, M., Appl. Catal. A: General, 2014, vol. 476, pp. 204–214. https://doi.org/10.4233/uuid:83b1d146-55e1-4b7b-8993-6cc88791f5bf

    Article  CAS  Google Scholar 

  8. Zarubina, V., Talebi, H., Nederlof, Ch., Kapteijn, F., Makkee, M., Cabrera, I.M., Carbon, 2014, vol. 77, pp. 329–340. https://doi.org/10.1016/j.carbon.2014.05.036

    Article  CAS  Google Scholar 

  9. Jie, X., Lun-Cun, W., Yong-Mei, L., Yong, C., He-Yong, H., and Kang-Nian, F., Catal. Lett., 2009, vol. 133, pp. 307–313. https://doi.org/10.1007/s10562-009-0174-x

    Article  CAS  Google Scholar 

  10. Ahmed, A., Hoceine, B., Zeid, A., Al-Othman, M., Rafiq, H.S., Asian J. Chem., 2014, vol. 26, no. 2, pp. 504–508. https://doi.org/10.14233/ajchem.2014.15601

    Article  CAS  Google Scholar 

  11. Castro, A.J.R., Soares, J.M., Filho, J.M., Oliveira, A.C., Campos, A., Milet, E.R.C., Fuel, 2013, vol. 108, pp. 740–748. https://doi.org/10.1016/j.fuel.2013.02.019

    Article  CAS  Google Scholar 

  12. Park, M.S., Vislovskiy, V.P., Chang, J.S., Shul, Y.G., Yoo, J.S., and Park, S.E., Catal. Today, 2003, vol. 87, no. 1–4, pp. 205–212. https://doi.org/10.1016/j.cattod.2003.10.015

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Thanks to Prof. S.I. Abasov, Head of the laboratory “Heterogeneous Catalysis” by for valuable advice in preparing this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Mamedova.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamedova, M.T. Oxidative Dehydrogenation of Ethylbenzene to Styrene on an Exhausted Aluminum Chromium Catalyst. Russ J Appl Chem 93, 488–493 (2020). https://doi.org/10.1134/S1070427220040023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220040023

Keywords:

Navigation