Skip to main content
Log in

Effect of Hydrogen Addition on Noncatalytic Partial Oxidation of Natural Gas with Oxygen in a Flow Reactor with Increased Calorific Intensity

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The effect of hydrogen addition on the partial oxidation of a natural gas/O2 mixture was studied in a flow reactor with increased calorific intensity. The addition of hydrogen (CH4/H2 = 3) to a fuel-rich natural gas/O2 mixture with the oxidizer excess ratio α = 0.34 leads to an increase in the yields of H2 and CO and in the H2/CO ratio and to a decrease in the yields of CO2, H2O, C2H4, and C2H2 and in ∆C. The hydrogen addition at CH4/H2 = 3 positively influences the hydrogen production in partial oxidation of natural gas/O2 mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. https://www.comsol.com/chemical-reaction-engineering-module.

REFERENCES

  1. Aasberg-Petersen, K., Bak Hansen, J.-H.B., Christensen, T.S., Dybkjaer, I., Christensen, P.S., Stub Nielsen, C., Winter Madsen, S.E.L., and Rostrup-Nielsen, J.R., Appl. Catal. A: General, 2001, vol. 221, nos. 1–2, pp. 379–387. https://doi.org/10.1016/S0926-860X(01)00811-0

    Article  CAS  Google Scholar 

  2. Wilhelm, D.J., Simbeck, D.R., Karp, A.D., Dickenson, R.L., Fuel Process. Technol., 2001, vol. 71, nos. 1–3, pp. 139–148. https://doi.org/10.1016/S0378-3820(01)00140-0

    Article  CAS  Google Scholar 

  3. Makhlin, V.A., Khim.Prom–st. Segodnya, 2010, no. 3, pp. 6–17.

    Google Scholar 

  4. Corke, M., Oil Gas J., 1998, vol. 96, no. 38, pp. 71–77.

    CAS  Google Scholar 

  5. Savchenko, V.I., Makaryan, I.A., Fokin, I.G., Sedov, I.V., Magomedov, R.N., Lipilin, M.G., and Arutyunov, V.S., Neftepererab. Neftekhim., 2013, no. 8, pp. 21–26.

    Google Scholar 

  6. Kolbanovskii, Yu.A., Bilera, I.V., Rossikhin, I.V., Borisov, A.A., and Troshin, K.Ya., Russ. J. Gen. Chem., 2011, vol. 81, no. 12, pp. 2594–2603. https://doi.org/10.1134/S1070363211120280

    Article  CAS  Google Scholar 

  7. Arutyunov, V.S., Shmelev, V.M., Sinev, M.Yu., and Shapovalova, O.V., Chem. Eng. J., 2011, vols. 176–177, pp. 291–294. https://doi.org/10.1016/j.cej.2011.03.084

    Article  CAS  Google Scholar 

  8. Rostrup-Nielsen, J.R., Catal. Today, 1994, vol. 21, nos. 2–3, pp. 257–267. https://doi.org/10.1016/0920-5861(94)80147-9

    Article  CAS  Google Scholar 

  9. Tang, C., Zhang, Y., and Huang, Z., Renew. Sustain. Energy Rev., 2014, vol. 30, pp. 195–216. https://doi.org/10.1016/j.rser.2013.10.005

    Article  CAS  Google Scholar 

  10. Emami, S.D., Kasmani, R.Md., Hamid, M.D., Hassan, C.R.C., and Mokhtar, K.M., Renew. Sustain. Energy Rev., 2016, vol. 62, pp. 1072–1082. https://doi.org/10.1016/j.rser.2016.05.029

    Article  CAS  Google Scholar 

  11. Yu, G., Law, C.K., and Wu, C.K., Combust. Flame, 1986, vol. 63, no. 3, pp. 339–347. https://doi.org/10.1016/0010-2180(86)90003-9

    Article  CAS  Google Scholar 

  12. Ilbas, M., Crayford, A.P., Yilmaz, I., Bowen, P.J., and Syred, N., Int. J. Hydrogen Energy, 2006, vol. 31, no. 12, pp. 1768–1779. https://doi.org/10.1016/j.ijhydene.2005.12.007

    Article  CAS  Google Scholar 

  13. Troshin, K.Ya., Borisov, A.A., Rakhmetov, A.N., Arutyunov, V.S., and Politenkova, G.G., Russ. J. Phys. Chem. B, 2013, vol. 7, no. 3, pp. 290–301. https://doi.org/10.1134/S1990793113050102

    Article  CAS  Google Scholar 

  14. Borisov, A.A., Borunova, A.B., Troshin, K.Ya., Kolbanovskii, Yu.A., and Bilera, I.V., Russ. J. Phys. Chem. B, 2015, vol. 9, no. 2, pp. 261–267. https://doi.org/10.1134/S1990793115020189

    Article  CAS  Google Scholar 

  15. Dagaut, P. and Nicolle, A., Proc. Combust. Inst., 2005, vol. 30, no. 2, pp. 2631–2638. https://doi.org/10.1016/j.proci.2004.07.030

    Article  CAS  Google Scholar 

  16. Herzler, J. and Naumann, C., Proc. Combust. Inst., 2009, vol. 32, no. 1, pp. 213–220. https://doi.org/10.1016/j.proci.2008.07.034

    Article  CAS  Google Scholar 

  17. Khan, A.R., Ravi, M.R., and Ray, A., Int. J. Hydrogen Energy, 2019, vol. 44, no. 2, pp. 1192–1212. https://doi.org/10.1016/j.ijhydene.2018.10.207

    Article  CAS  Google Scholar 

  18. Cao, S., Wang, D., and Wang, T., Chem. Eng. Sci., 2010, vol. 65, no. 8, pp. 2608–2618. https://doi.org/10.1016/j.ces.2009.12.035

    Article  CAS  Google Scholar 

  19. Borisov, A.A., Troshin, K.Ya., Kolbanovskii, Yu.A., and Bilera, I.V., Goren. Vzryv, 2012, vol. 5, pp. 33–39.

    Google Scholar 

  20. Borisov, A.A., Troshin, K.Ya., Skachkov, G.I., Kolbanovskii, Yu.A., and Bilera, I.V., Russ. J. Phys. Chem. B, 2014, vol. 8, no. 6, pp. 866–869. https://doi.org/10.1134/S1990793114110153

    Article  CAS  Google Scholar 

  21. Frolov, S.M., Medvedev, S.N., Basevich, V.Ya., and Frolov, F.S., Int. J. Hydrogen Energy, 2013, vol. 38, no. 10, pp. 4177–4184. https://doi.org/10.1016/j.ijhydene.2013.01.075

    Article  CAS  Google Scholar 

  22. Borisov, A.A., Borunova, A.B., Troshin, K.Ya., Kolbanovskii, Yu.A., and Bilera, I.V., Goren. Vzryv, 2014, vol. 7, pp. 100–106.

    Google Scholar 

  23. Liu, F., Ai, Y., and Kong, W., Int. J. Hydrogen Energy, 2014, vol. 39, no. 8, pp. 3936–3946. https://doi.org/10.1016/j.ijhydene.2013.12.151

    Article  CAS  Google Scholar 

  24. Ahmed, A.M., Mancarella, S., Desgroux, P., Gasnot, L., Pauwels, J.-F., and El Bakali, A., Int. J. Hydrogen Energy, 2016, vol. 41, no. 16, pp. 6929–6942. https://doi.org/10.1016/j.ijhydene.2015.11.148

    Article  CAS  Google Scholar 

  25. Li, C., Kuan, B., Lee, W.J., Burke, N., and Patel, J., Chem. Eng. Sci., 2018, vol. 187, pp. 189–199. https://doi.org/10.1016/j.ces.2018.04.070

    Article  CAS  Google Scholar 

  26. Kaczmarek, D., Atakan, B., and Kasper, T., Combust. Sci. Technol., 2019, vol. 191, no. 9, pp. 1571–1584. https://doi.org/10.1080/00102202.2019.1577829

    Article  CAS  Google Scholar 

  27. Shevchuk, V.U., Gaz. Prom–st., 1957, no. 7, pp. 32–37.

    Google Scholar 

  28. Harriott, P., Chemical Reactor Design, New York: Dekker, 2003.

    Google Scholar 

  29. Burke, U., Somers, K.P., O’Toole, P., Zinner, C.M., Marquet, N., Bourque, G., Petersen, E.L., Metcalfe, W.K., Serinyel, Z., and Curran, H.J., Combust. Flame, 2015, vol. 162, no. 2, pp. 315–330. https://doi.org/10.1016/j.combustflame.2014.08.014

    Article  CAS  Google Scholar 

  30. Köhler, M., Oßwald, P., Xu, H., Kathrotia, T., Hasse, Ch., and Riedel, U., Chem. Eng. Sci., 2016, vol. 139, pp. 249–260. https://doi.org/10.1016/j.ces.2015.09.033

    Article  CAS  Google Scholar 

  31. Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C. Jr., Lissianski, V.V., and Qin, Z.W., GRI-Mech 3.0. http://combustion.berkeley.edu/gri-mech/. Cited July 5, 2018

  32. Wang, H., You, X., Joshi, A.V., Davis, S.G., Laskin, A., Egolfopoulos, F., and Law, C.K., USCMech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds, 2007. http://ignis.usc.edu/USC_Mech_II.htm. Cited July 5, 2018.

  33. Bilera, I.V., Buravtsev, N.N., Kolbanovskii, Yu.A., and Rossikhin, I.V., Sbornik trudov “Tekhnologicheskoe gorenie” (Coll. of Papers “Technological Combustion”), Aldoshin, S.M. and Alymov, M.I., Eds., Moscow: Ross. Akad. Nauk, 2018. https://doi.org/10.31857/S9785907036383000002

  34. Buravtsev, N.N., Kolbanovskii, Yu.A., Rossikhin, I.V., and Bilera, I.V., Russ. J. Appl. Chem., 2018, vol. 91, no. 10, pp. 1588–1596. https://doi.org/10.1134/S107042721810004X

    Article  CAS  Google Scholar 

  35. Buravtsev, N.N., Kolbanovskii, Yu.A., Rossikhin, I.V., and Bilera, I.V., Russ. J. Phys. Chem. B, 2019, vol. 13, no. 2, pp. 273–279. https://doi.org/10.1134/S1990793119020027

    Article  CAS  Google Scholar 

  36. Kolbanovskii, Yu.A., Buravtsev, N.N., Bilera, I.V., Rossikhin, I.V., and Borisov, Yu.A., NefteGazoKhimiya, 2015, no. 1, pp. 28–32.

    Google Scholar 

  37. Karavaev, M.M., Leonov, V.E., Popov, I.G., and Shepelev, E.T., Tekhnologiya sinteticheskogo metanola (Technology of Synthetic Methanol), Moscow: Khimiya, 1984

    Google Scholar 

  38. Antonov, V.N. and Lapidus, A.S., Proizvodstvo atsetilena (Acetylene Production), Moscow: Khimiya, 1970, pp. 154–214.

    Google Scholar 

  39. Pässler, P., Hefner, W., Buckl, K., Meinass, H., Meiswinkel, A., Wernicke, H., Ebersberg, G., Muüller, R., Bässler, J., Behringer, H., and Mayer, D., Acetylene, Ullmann’s Encyclopedia of Industrial Chemistry, Wiley–VCH, 2008. https://doi.org/10.1002/14356007.a01_097.pub3

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Bilera.

Ethics declarations

FUNDING

The study was performed within the framework of the government assignment for the Institute of Petrochemical Synthesis, Russian Academy of Sciences.

CONFLICT OF INTERESTS

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilera, I.V., Buravtsev, N.N. & Rossikhin, I.V. Effect of Hydrogen Addition on Noncatalytic Partial Oxidation of Natural Gas with Oxygen in a Flow Reactor with Increased Calorific Intensity. Russ J Appl Chem 93, 456–465 (2020). https://doi.org/10.1134/S1070427220030180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220030180

Keywords:

Navigation