Skip to main content
Log in

Grafting of Unsaturated Higher Fatty Acids to Chitosan in Aqueous Medium

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Grafted amides with the degree of modification reaching 9% were prepared by the reaction of chitosan with unsaturated higher fatty acids in an acidified aqueous medium in the presence of a mixture of N-ethyl-N′-(dimethylaminopropyl)carbodiimide hydrochloride with N-hydroxysuccinimide. The products are insoluble in aqueous solutions of monobasic acids but swell in them to form hydrogels; the maximal degree of swelling is 1442%. The hydrogels show good biocompatibility and adhesion of multipotent stromal cells of bone marrow, which makes them promising for designing cell carrier scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Costa-Pinto, A.R., Reis, R.L., and Neves, N.M., Tissue Eng.: Part B, 2011, vol. 17, no. 5, pp. 331–347. https://doi.org/10.1089/ten.teb.2010.0704

    Article  CAS  Google Scholar 

  2. Mathews, S., Gupta, P.K., Bhonde, R., and Totey, S., Cell Prolif., 2011, vol. 44, pp. 537–549. https://doi.org/10.1111/j.1365-2184.2011.00788.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Oh, J., Kim, K., Won, S.W., Cha, C., Gaharwar, A.K., Selimović, Š., Bae, H., Lee, K.H., Lee, D.H., Lee, S.-H., and Khademhosseini, A., Biomed. Microdevices, 2013, vol. 15, pp. 465–472. https://doi.org/10.1007/s10544-013-9746-z

    Article  CAS  PubMed  Google Scholar 

  4. Demina, T.S., Akopova, T.A., Vladimirov, L.V., Shchegolikhin, A.N., Kechek’yan, A.S., Perov, N.S., Chernyshenko, A.O., and Zelenetskii, A.N., Polym. Sci., Ser. B, 2011, vol. 53, nos. 5–6, pp. 358–370. https://doi.org/10.1134/S1560090411060030

    Article  CAS  Google Scholar 

  5. Rogovina, S.Z., Vikhoreva, G.A., Akopova, T.A., Gorbacheva, I.N., and Zelenetskii, S.N., Mendeleev Commun., 1998, vol. 8, no. 3, pp. 107–109. https://doi.org/10.1070/MC1998v008n03ABEH000923

    Article  Google Scholar 

  6. Riva, R., Ragelle, H., Rieux, A., Duhem, N., Jérôme, C., and Préat, V., Adv. Polym. Sci., 2011, vol. 244, pp. 19–44. https://doi.org/10.1007/12_2011_137

    Article  CAS  Google Scholar 

  7. Du, Y.-Z., Lu, P., Zhou, J.-P., Yuan, H., and Hu, F.-Q., Int. J. Pharm., 2010, vol. 391, pp. 260–266. https://doi.org/10.1016/j.ijpharm.2010.02.017

    Article  CAS  PubMed  Google Scholar 

  8. Du, Y.-Z., Wang, L., Yuan, H., and Hu, F.-Q., Int. J. Biol. Macromol., 2011, vol. 48, pp. 215–222. https://doi.org/10.1016/j.ijbiomac.2010.11.005

    Article  CAS  PubMed  Google Scholar 

  9. Du, Y.-Z., Wang, L., Yuan, H., Wei, X.-H., and Hu, F.-Q., Colloids Surf. B: Biointerfaces, 2009, vol. 69, pp. 257–263. https://doi.org/10.1016/j.colsurfb.2008.11.030

    Article  CAS  PubMed  Google Scholar 

  10. Ye, Y.-Q., Yang, F.-L., Hu, F.-Q., Du, Y.-Z., Yuan, H., and Yu, H.-Y., Int. J. Pharm., 2008, vol. 352, pp. 294–301. https://doi.org/10.1016/j.ijpharm.2007.10.035

    Article  CAS  PubMed  Google Scholar 

  11. Li, Q., Du, Y.-Z., Yuan, H., Zhang, X.-G., Miao, J., Cui, F.D., and Hu, F.-Q., Eur. J. Pharm. Sci., 2010, vol. 41, pp. 498–507. https://doi.org/10.1016/j.ejps.2010.08.004

    Article  CAS  PubMed  Google Scholar 

  12. Hu, F.-Q., Wu, X.-L., Du, Y.-Z., You, J., and Yuan, H., Eur. J. Pharm. Biopharm., 2008, vol. 69, pp. 117–125. https://doi.org/10.1016/j.ejpb.2007.09.018

    Article  CAS  PubMed  Google Scholar 

  13. Xiao, Y., Li, P., Cheng, Y., Zhang, X., Sheng, J., Wang, D., Li, J., Zhang, Q., Zhong, C., Cao, R., and Wang, F., Int. J. Pharm., 2014, vol. 465, pp. 143–158. https://doi.org/10.1016/j.ijpharm.2014.02.009

    Article  CAS  PubMed  Google Scholar 

  14. Collins, M.N. and Birkinshaw, C., Carbohydr. Polym., 2013, vol. 92, pp. 1262–1279. https://doi.org/10.1016/j.carbpol.2012.10.028

    Article  CAS  PubMed  Google Scholar 

  15. Mutasher, S.H., Salih, A.A., and Al-Lami, H.S., Pharma Chem., 2016, vol. 8, no. 11, pp. 125-134. http://derpharmachemica.com/archive.html.

    CAS  Google Scholar 

  16. Sridhari, T.R. and Dutta, P.K., Indian J. Chem. Technol., 2000, vol. 7, pp. 198-201.

    CAS  Google Scholar 

  17. Tikhonov, V.E., Stepnova, E.A., Babak, V.G., Krayukhina, M.A., Berezin, B.B., and Yamskov, I.A., React. Funct. Polym., 2008, vol. 68, pp. 436–445. https://doi.org/10.1016/j.reactfunctpolym.2007.11.002

    Article  CAS  Google Scholar 

  18. Lee, K.Y., Ha, W.Sh., and Park, W.H., Biomaterials, 1995, vol. 16, pp. 1211–1216. https://doi.org/10.1016/0142-9612(95)98126-Y

    Article  CAS  PubMed  Google Scholar 

  19. Neamnark, A., Rujiravanit, R., and Supaphol, P., Carbohydr. Polym., 2006, vol. 66, pp. 298–305. https://doi.org/10.1016/j.carbpol.2006.03.015

    Article  CAS  Google Scholar 

  20. Chailakhyan, R.K., Gerasimov, Yu.V., Yusupov, V.I., Sviridov, A.P., Tambiev, A.Kh., Vorob’eva, N.N., Grosheva, A.G., Kuralesova, A.I., Moskvina, I.L., and Bagratashvili, V.N., Sovrem. Tekhnol. Med., 2017, vol. 9, no. 1, pp. 28–37. https://doi.org/10.17691/stm2017.9.1.03

    Article  Google Scholar 

  21. Chaikhalyan, R.K., Yusupov, V.I., Gorskaya, Yu.F., Kuralesova, A.I., Gerasimov, Yu.V., Sviridov, A.P., Tambiev, A.Kh., Vorob’eva, N.N., Grosheva, A.G., Shishkova, V.V., Moskvina, I.L., and Bagratashvili, V.N., Bull. Exp. Biol. Med., 2015, vol. 158, no. 5, pp. 688–691. https://doi.org/10.1007/s10517-015-2836-6

    Article  CAS  PubMed  Google Scholar 

  22. Bogomolova, T.S., Kozlova, N.V., and Chvalun, S.N., Polym. Sci., Ser. B, 2009, vol. 51, nos. 9-10, pp. 352–359. https://doi.org/10.1134/S156009040909005X

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Farion.

Ethics declarations

FUNDING

Synthesis and biological tests of the synthesized graft derivatives of chitosan were supported by the Russian Science Foundation (project no. 16-15-00042). Determination of the degree of modification and swelling of chitosan derivatives were performed within the framework of the government assignment for the Baikal Institute of Nature Management, Russian Academy of Sciences.

CONFLICT OF INTERESTS

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farion, I.A., Burdukovskii, V.F., Kholkhoev, B.C. et al. Grafting of Unsaturated Higher Fatty Acids to Chitosan in Aqueous Medium. Russ J Appl Chem 93, 420–426 (2020). https://doi.org/10.1134/S1070427220030143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220030143

Keywords:

Navigation