Skip to main content
Log in

Influence of Concentration of Precursors and Solvent on the Size of Zinc Sulfide Nanoparticles Produced in Ionic Liquid Medium

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A method was proposed for producing ZnS semiconductor nanoparticles: “quantum dots” in an ionic liquid medium, N-decylpyridinium tetrafluoroborate. The average nanoparticle sizes were determined by UV spectroscopy, dynamic light scattering, and probe microscopy. It is shown that a high threshold concentration of nanoparticles is reached in the ionic liquid medium, an increase in the concentration of precursors in the reaction mixture leads to an increase in the average size of nanoparticles. Ultrasonic treatment helps to reduce the polydispersity of sols and results in the formation of stable sols with a higher concentration of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Grainger, D.W. and Castner, D.J., Adv. Mater., 2008, vol. 20, pp. 867–877. https://doi.org/10.1002/adma.200701760

    Article  CAS  Google Scholar 

  2. Baer, D.R., J. Vacuum Sci. & Technol. A, 2013, vol. 31, no. 5, p. 50820. https://doi.org/10.1116/1.4818423

    Article  CAS  Google Scholar 

  3. Baer, D.R., Gaspar, D.J., Nachimuthu, P., Techane, S.D., and Castner, D.G., Anal. Bioanal. Chem., 2010, vol. 396, pp. 983–1002. https://doi.org/10.1007/s00216-009-3360-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alivisatos, P., Nat. Biotechnol., 2004, vol. 22, pp, 47–52. https://doi.org/10.1038/nbt927

    Article  CAS  PubMed  Google Scholar 

  5. Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S., and Weiss, S., Science, 2005, vol. 307, pp. 538–544. https://doi.org/10.1126/science.1104274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zorn, G., Dave, S.R., Gao, X., and Castner, D.G., Anal. Chem., 2011, vol. 83, pp. 866–873. https://doi.org/10.1021/Ac102516n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Morris-Cohen, A.J., Malicki, M., Peterson, M.D., Slavin, J., W.J., and Weiss, E.A., Chem. Mater., 2013, vol. 25, no. 8, pp. 1155–1165. https://doi.org/10.1021/cm302108j

    Article  CAS  Google Scholar 

  8. Smith, A.M. and Nie, S.M., Analyst, 2004, vol. 129, pp. 672–677. https://doi.org/10.1039/b404498n

    Article  CAS  PubMed  Google Scholar 

  9. Medintz, I.L., Uyeda, H.T., Goldman, E.R., and Mattoussi, H., Nat. Mater., 2005, vol. 4, no. 6, pp. 435–446. https://doi.org/10.1038/nmat1390

    Article  CAS  PubMed  Google Scholar 

  10. Murray, C.B., Norris, D.J., and Bawendi, M.G., J. Am. Chem. Soc., 1993, vol. 115, pp. 8706–8715. https://doi.org/10.1021/ja00072a025

    Article  CAS  Google Scholar 

  11. Joo, J., Na, H.B., Yu, T., Yu, J.H., Kim, Y.W., Wu, F., Zhang, J.Z., and Hyeon, T., J. Am. Chem. Soc., 2003, vol. 125, pp. 11100–11105. https://doi.org/10.1021/ja0357902

    Article  CAS  PubMed  Google Scholar 

  12. Wang, G.Z., Geng, B.Y., Huang, X.M., Wang, Y.W., Li, G.H., and Zhang, L.D., Appl. Phys. A, 2003, vol. 77, pp. 933–936. https://doi.org/10.1007/s00339-002-2033-0

    Article  CAS  Google Scholar 

  13. Wang, L.P. and Hong, G.Y., Mater. Res. Bull., 2000, vol. 35, pp. 695–701. https://doi.org/10.1016/S0025-5408(00)00261-0

    Article  CAS  Google Scholar 

  14. Dash, P. and Scott, R.W.J., Mater. Lett., 2011, vol. 65, pp. 7–9. https://doi.org/10.1016/j.matlet.2010.09.031

    Article  CAS  Google Scholar 

  15. Dupont, J., Fonseca, G.S., Umpierre, A.P., Fichtner, P.F.P., and Teixeira, S.R., J. Am. Chem. Soc., 2002, vol. 124, no. 16, pp. 4228–4229. https://doi.org/10.1021/ja025818u

    Article  CAS  PubMed  Google Scholar 

  16. Richter, K., Campbell, P.S., Baecker, T., Schimitzek, A., Yaprak, D., and Mudring, A.V., Phys. Status Solidi B, 2013, vol. 250, pp. 1152–1164. https://doi.org/10.1002/pssb.201248547

    Article  CAS  Google Scholar 

  17. Yin, S., Luo, Z., Xia, J., and Li, H., J. Phys. Chem. Solids, 2010, vol. 71, pp. 1785–1788. https://doi.org/10.1016/j.jpcs.2010.09.016

    Article  CAS  Google Scholar 

  18. Zhuravlev, O.E., Presnyakov, I.A., and Voronchikhina, L.I., Russ. J. Appl. Chem., 2015, vol. 88, no. 6, pp. 914–920. https://doi.org/10.1134/S1070427215060038?

    Article  CAS  Google Scholar 

  19. Zhilenko, M.P., Lupandina, K.V., Ehrlich, H.V., and Lisichkin, G.V., Russ. Chem. Bull., 2010, vol. 59, no. 7, pp. 1307–1311. https://doi.org/10.1007/s11172-010-0239-4?

    Article  CAS  Google Scholar 

  20. Manukumar, K.N., Nagaraju, G., Kishore Brij Madhu, C., and Munichandraiah, N., J. Energy Chem., 2018, vol. 27, no. 3, pp. 806–812. https://doi.org/10.1016/j.jechem.2017.05.010

    Article  Google Scholar 

  21. Spravochnik khimika, T. 6 (Handbook of a Chemist, vol. 6), Nikol’skii, V.P., Ed., Leningrad: Khimiya, 1966.

  22. Bolotov, A.N., Novikov, V.V., and Novikova, O.O., Izv. Vuzov. Khimiya Khim. Tekhnologiya, 2017, vol. 60, no. 4, pp. 75–81. https://doi.org/10.6060/tcct.2017604.5506

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. E. Zhuravlev.

Ethics declarations

FUNDING

The study was carried out with financial support from the Russian Foundation for Basic Research in the framework of the scientific project no. 18-33-00890.

CONFLICT OF INTERESTS

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuravlev, O.E., Krotova, N.I. & Voronchikhina, L.I. Influence of Concentration of Precursors and Solvent on the Size of Zinc Sulfide Nanoparticles Produced in Ionic Liquid Medium. Russ J Appl Chem 93, 340–345 (2020). https://doi.org/10.1134/S1070427220030040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220030040

Keywords:

Navigation