Skip to main content
Log in

Thermal Conductivity of Calcium Aluminate and Complex Vanadates of Garnet Structure

  • Physicochemical Studies of Systems and Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The thermal conductivity of materials with the nonstoichiometric garnet structure, namely, of calcium aluminate Са12Al14O33±δ (both single crystal and ceramic) and doped vanadates Ca5Mg4–xMx(VO4)6 (M = Zn, Co; 0 ≤ x ≤ 4), in the temperature interval 50–300 K was studied by the steady state comparative-longitudinal thermal flux method. The compositions Ca5Mg4–xZnx(VO4)6, x =1, 3, 4, were studied in the temperature interval 298–573 K by the dynamic method. The effect of the defective structure on the thermal conductivity of the materials was discussed. The thermal conductivity of the materials is ~2 W m–1 K–1 at room temperature and above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Grew, E.S., Locock, A.J., Mills, S.J., Galuskina, I.O., Galuskin, E.V., and Halenius, U., Am. Miner., 2013, vol. 98, pp. 785–810. https://doi.org/10.2138/am.2013.4201

    Article  CAS  Google Scholar 

  2. Murugan, R., Thangadurai, V., and Weppner, W., Angew. Chem., 2007, vol. 46, pp. 7778–7781. https://doi.org/10.1002/anie.200701144

    Article  CAS  Google Scholar 

  3. Wagner, R., Redhammer, G.J., Rettenwander, D., Tippelt, G., Welzl, A., Taibl, S., Fleig, J., Franz, A., Lottermoser, W., and Amthauer, G., Chem. Mater., 2016, vol. 28, no. 16, pp. 5943–5951. https://doi.org/10.1021/acs.chemmater.6b02516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mullerbuschbaum, H. and Vonpostel, M., Z. Anorg. Allg. Chem., 1992, vol. 615, no. 9, pp. 101–103. https://doi.org/10.1002/zaac.19926150920

    Article  Google Scholar 

  5. Armbruster, T. and Danisi, R.M., Highlights in Mineralogical Crystallography, Berlin: Walter de Gruyter, 2016.

    Google Scholar 

  6. Hosono, H. and Abe, Y., Inorg. Chem., 1987, vol. 26, no. 8, pp. 1192–1195. https://doi.org/10.1021/ic00255a003

    Article  CAS  Google Scholar 

  7. Grins, J., Istomin, S.Y., Svensson, G., Attfield, J.P., and Antipov, E., J. Solid State Chem., 2005, vol. 178, no. 7, pp. 2197–2204. https://doi.org/10.1016/j.jssc.2005.04.029

    Article  CAS  Google Scholar 

  8. Sushko, P.V., Shluger, A.L., Hayashi, K., Hirano, M., and Hosono, H., Phys. Rev. Lett., 2003, vol. 91, no. 12, p. 126401. https://doi.org/10.1103/PhysRevLett.91.126401

    Article  CAS  PubMed  Google Scholar 

  9. Johnson, L.E., Sushko, P.V., Tomota, Y., and Hosono, H., Proc. Natl. Acad. Sci. USA, 2016, vol. 113, no. 36, pp. 10007–10012. https://doi.org/10.1073/pnas.1606891113

    Article  CAS  PubMed  Google Scholar 

  10. Kohama, Y., Kim, S.W., Tojo, T., Kawaji, H., Atake, T., Matsuishi, S., and Hosono, H., Phys. Rev. B, 2008, vol. 77, no. 9, p. 092505. https://doi.org/10.1103/PhysRevB.77.092505

    Article  CAS  Google Scholar 

  11. Kohama, Y., Tojo, T., Kawaji, H., Atake, T., Matsuishi, S., and Hosono, H., Chem. Phys. Lett., 2006, vol. 421, nos. 4–6, pp. 558–561. https://doi.org/10.1016/j.cplett.2006.02.016

    Article  CAS  Google Scholar 

  12. Shkerin, S.N., Tolkacheva, A.S., Korzun, I.V., Plaksin, S.V., Vovkotrub, E.G., and Zabolotskaya, E.V., J. Therm. Anal. Calorim., 2016, vol. 124, no. 3, pp. 1209–1216. https://doi.org/10.1007/s10973-016-5282-4

    Article  CAS  Google Scholar 

  13. Nishioka, M., Nanjyo, H., Hamakawa, S., Kobayashi, K., Sato, K., Inoue, T., Mizukami, F., and Sadakata, M., Solid State Ionics, 2006, vol. 177, nos. 26–32, pp. 2235–2239. https://doi.org/10.1016/j.ssi.2006.08.007

    Article  CAS  Google Scholar 

  14. Li, C.S., Hirabayashi, D., and Suzuki, K., Appl. Catal. B: Environmental, 2009, vol. 88, nos. 3–4, pp. 351–360. https://doi.org/10.1016/j.apcatb.2008.11.004

    Article  CAS  Google Scholar 

  15. Mironova, E.Y., Ermilova, M.M., Orekhova, N.V., Tolkacheva, A.S., Shkerin, S.N., and Yaroslavtsev, A.B., Nanotechnol. Russ., 2017, vol. 12, nos. 11–12, pp. 597–604. https://doi.org/10.1134/s1995078017060064

    Article  CAS  Google Scholar 

  16. Kuganathan, N. and Chroneos, A., Nanomaterials, 2019, vol. 9, no. 6, p. E816. https://doi.org/10.3390/nano9060816

    Article  CAS  PubMed Central  Google Scholar 

  17. Tolkacheva, A.S., Shkerin, S.N., Kalinina, E.G., Filatov, I.E., and Safronov, A.P., Russ. J. Appl. Chem., 2014, vol. 87, no. 4, pp. 536–538. https://doi.org/10.1134/s1070427214040235

    Article  CAS  Google Scholar 

  18. Tolkacheva, A.S., Shkerin, S.N., Plaksin, S.V., Vovkotrub, E.G., Bulanin, K.M., Kochedykov, V.A., Ordinartsev, D.P., Gyrdasova, O.I., and Molchanova, N.G., Russ. J. Appl. Chem., 2011, vol. 84, no. 6, pp. 907–911. https://doi.org/10.1134/s1070427211060012

    Article  CAS  Google Scholar 

  19. Patent RU 2459781, Publ. 2012

  20. Kim, S.W., Tarumi, R., Iwasaki, H., Ohta, H., Hirano, M., and Hosono, H., Phys. Rev. B, 2009, vol. 80, no. 7, p. 075201. https://doi.org/10.1103/PhysRevB.80.075201

    Article  CAS  Google Scholar 

  21. Rudradawong, C. and Ruttanapun, C., Mater. Chem. Phys., 2019, vol. 226, pp. 296–301. https://doi.org/10.1016/j.matchemphys.2019.01.028

    Article  CAS  Google Scholar 

  22. Rodriguez-Carvajal, J., Physica B, 1993, vol. 192, nos. 1–2, pp. 55–69. https://doi.org/10.1016/0921-4526(93)90108-I

    Article  CAS  Google Scholar 

  23. Tolkacheva, A.S., Shkerin, S.N., Plaksin, S.V., Pankratov, A.A., and Moskalenko, N.I., Refract. Ind. Ceram., 2019, vol. 60, no. 1, pp. 109–114. https://doi.org/10.1007/s11148-019-00318-w

    Article  CAS  Google Scholar 

  24. Tolkacheva, A.S., Shkerin, S.N., Zemlyanoi, K.G., Reznitskikh, O.G., Pershina, S.V., and Khavlyuk, P.D., J. Therm. Anal. Calorim., 2019, vol. 136, no. 3, pp. 1003–1009. https://doi.org/10.1007/s10973-018-7780-z

    Article  CAS  Google Scholar 

  25. Popov, P.A., Sidorov, A.A., Kul’chenkov, E.A., Anishchenko, A.M., Avetisov, I.Ch., Sorokin, N.I., and Fedorov, P.P., Ionics, 2017, vol. 23, no. 1, pp. 233–239. https://doi.org/10.1007/s11581-016-1802-2

    Article  CAS  Google Scholar 

  26. Berman, R., Thermal Conduction in Solids, Oxford: Clarendon, 1976, pp. 1–193.

    Google Scholar 

  27. Hosono, H., Hayashi, K., Kajihara, K., Sushko, P.V., and Shluger, A.L., Solid State Ionics, 2009, vol. 180, nos. 6–8, pp. 550–555. https://doi.org/10.1016/j.ssi.2008.10.015

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Tolkacheva.

Ethics declarations

FUNDING

The study was performed using the equipment of the Center for Shared Use at the Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences. The single crystal of mayenite was grown within the framework of Spin program of the Federal Agency of Scientific Organizations of the Russian Federation, no. АААА-А18-118020290104-2. The study was financially supported in part by the Russian Foundation for Basic Research (project no. 17-03-01280_а).

CONFLICT OF INTERESTS

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolkacheva, A.S., Popov, P.A., Shkerin, S.N. et al. Thermal Conductivity of Calcium Aluminate and Complex Vanadates of Garnet Structure. Russ J Appl Chem 93, 325–332 (2020). https://doi.org/10.1134/S1070427220030027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220030027

Keywords:

Navigation