Skip to main content
Log in

Lithium–Tellurium System: Thermodynamic and Electrochemical Studies and Prospects for Use in Chemical Current Sources

  • Reviews
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Published data on the lithium–tellurium phase diagram and on thermodynamic properties of liquid alloys and solid phases formed are summarized and comprehensively analyzed in connection with prospects for using tellurium and its compounds and composites in various energy conversion systems involving lithium. The results of studying the thermodynamic properties of lithium tellurides by different methods are compared. The results of the main studies dealing with the use of tellurium in chemical current sources (CCSs) of various designs are briefly considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Kim, H., Boysen, D.A., Newhouse, J.M., Spatocco, B.L., Chung, B., Burke, P.J., Bradwell, D.J., Jang, K., Tomaszowska, A.A., Wang, K., Wei, W., Ortiz, L.A., Barriga, S.A., Poizeau, S.M., and Sadoway, D.R., Chem. Rev., 2013, vol. 113, pp. 2075–2099.

    Article  CAS  PubMed  Google Scholar 

  2. Ning, X., Phadke, S., Chung, B., Yin, H., Burke, P., and Sadoway, D.R., J. Power Sources, 2015, vol. 275, pp. 170–176.

    Article  CAS  Google Scholar 

  3. Nitta, N., Wu, F., Lee, J.T., and Yushin, G., Mater. Today, 2015, vol. 18, no. 5, pp. 252–264.

    Article  CAS  Google Scholar 

  4. Liu, Y., Wang, J., Xu, Y., Zhu, Y., Bigio, D., and Wang, C., J. Mater. Chem. A, 2014, vol. 2, pp. 12201–12207.

    Article  CAS  Google Scholar 

  5. Seo, J.-U., Seong, G.-K., and Park, G.-M., Sci. Rep., 2015, vol. 5, no. 7969

  6. Koketsu, T., Paul, B., Wu, C., Kraehnert, R., Huang, Y., and Strasser, P., J. Appl. Electrochem., 2016, vol. 46, no. 6, pp. 627–633.

    Article  CAS  Google Scholar 

  7. Tazetdinov, R.G. and Tibrin, G.S., Khimicheskie istochniki toka s reaktsionno formiruyushchimsya elektrolitom (Chemical Current Sources with a Reaction-Formed Electrolyte), Moscow: Mosk. Aviats. Inst., 2013.

    Google Scholar 

  8. Sangster, J. and Pelton, A.D., J. Phase Equil., 1992, vol. 13, no. 3, pp. 300–303.

    Article  CAS  Google Scholar 

  9. Cunningham, P.T., Johnson, S.A., and Cairns, E.J., J. Electrochem. Soc., 1973, vol. 120, no. 3, pp. 328–330.

    Article  CAS  Google Scholar 

  10. Valentine, D.Y., Cawin, O.B., and Yakel, H.L., Acta Crystallogr., Sect. B, 1977, vol. 33, no. 5, pp. 1389–1396.

    Article  Google Scholar 

  11. Zhang, X.D. and Shi, H.F., Mater. Sci. Technol., 2014, vol. 30, no. 6, pp. 732–738.

    Article  CAS  Google Scholar 

  12. Wang, Y., Tian, F., Li, D., Duan, D., Liu, Y., Liu, B., Zhou, Q., and Cui, T., Mater. Res. Express, 2017, vol. 4, art. 015701, pp. 1–7.

    CAS  Google Scholar 

  13. Morachevskii, A.G., Russ. J. Appl. Chem., 2001, vol. 74, no. 4, pp. 564–568.

    Article  CAS  Google Scholar 

  14. Morachevskii, A.G. and Demidov, A.I., Termodinamika i elektrokhimiya sistem litii–khal’kogen i natrii–khal’kogen (Thermodynamics and Electrochemistry of Lithium–Chalcogen and Sodium–Chalcogen Systems), St. Petersburg: Politekh. Univ., 2017.

    Google Scholar 

  15. Foster, M.S. and Liu, C.C., J. Phys. Chem., 1966, vol. 70, no. 3, pp. 950–952.

    Article  CAS  Google Scholar 

  16. Demidov, A.I., Morachevskii, A.G., and Ivantsova, M.N., Sov. Electrochem., 1975, vol. 11, no. 5, pp. 762–763.

    Google Scholar 

  17. Morachevskii, A.G. and Demidov, A.I., Zh. Fiz. Khim., 1983, vol. 57, no. 9, pp. 2113–2128.

    CAS  Google Scholar 

  18. Chekoev, N.G. and Morachevskii, A.G., J. Appl. Chem. USSR, 1979, vol. 52, no. 3, pp. 646–648.

    Google Scholar 

  19. Morachevskii, A.G. and Firsova, E.G., Termodinamika zhidkikh metallov i splavov (Thermodynamics of Liquid Metals and Alloys), St. Petersburg: Lan’, 2016.

    Google Scholar 

  20. Hith, B.F., Toth, L.M., and Brynestad, J., J. Inorg. Nucl. Chem., 1978, vol. 40, no. 1, pp. 31–34.

    Article  Google Scholar 

  21. Mills, K.S., Thermodynamic Data for Inorganic Sulphides, Selenides and Tellurides, London: Butterworths, 1974.

    Google Scholar 

  22. Voronin, G.F., Zh. Fiz. Khim., 1970, vol. 44, no. 3, pp. 313–317.

    Google Scholar 

  23. Morachevskii, A.G., Sladkov, I.B., and Firsova, E.G., Termodinamicheskie raschety v khimii i metallurgii (Thermodynamic Calculations in Chemistry and Metallurgy), St. Petersburg: Lan’, 2018.

    Google Scholar 

  24. Morachevskii, A.G., Abstracts of Papers, Pervyi Ukrainskii elektrokhimicheskii s”ezd (First Ukrainian Electrochemical Congr.), Kyiv, 1995, p. 147.

  25. Morachevskii, A.G., Voronin, G.F., Geiderikh, V.A., and Kutsenok, I.B., Elektrokhimicheskie metody issledovaniya v termodinamike metallicheskikh sistem (Electrochemical Methods of Investigation in Thermodynamics of Metal Systems), Moscow: Akademkniga, 2003.

    Google Scholar 

  26. Schlesinger, M.E., Chem. Rev., 2013, vol. 113, pp. 8066–8092.

    Article  CAS  PubMed  Google Scholar 

  27. Demidov, A.I., Dukhanin, G.P., Simikov, I.A. and Morachevskii, A.G., Sov. Electrochem., 1975, vol. 19, no. 8, pp. 1013–1016.

    Google Scholar 

  28. Fleming, J.G. and Stevenson, D.A., J. Electrochem. Soc., 1989, vol. 136, no. 12, pp. 3859–3863.

    Article  CAS  Google Scholar 

  29. Bodewig, F.G. and Plambeck, J.A., J. Electrochem. Soc., 1970, vol. 117, no. 5, pp. 618–621.

    Article  CAS  Google Scholar 

  30. Barin, I., Knacke, O., and Kubaschewski, O., Thermochemical Properties of Inorganic Substances. Supplement, Berlin: Stahleisen, 1977.

    Book  Google Scholar 

  31. Cairns, E.J. and Shimotake, H., Science, 1969, vol. 164, no. 3885, pp. 1347–1353.

    Article  CAS  PubMed  Google Scholar 

  32. Shimotake, H., Rogers, G.L., and Cairns, E.J., Ind. Eng. Chem. Des. Develop., 1969, vol. 8, no. 1, pp. 51–56.

    Article  CAS  Google Scholar 

  33. Demidov, A.I. and Morachevskii, A.G., in Fiziko-khimicheskie issledovaniya v tekhnologicheskikh protsessakh: Mezhvuzovskii sbornik (Physicochemical Studies in Processes of Technology: Intercollegiate Coll.), Leningrad: Leningr. Politekh. Inst., 1977.

  34. Temnogorova, N.V., Demidov, A.I., and Morachevskii, A.G., Zh. Prikl. Khim., 1979, vol. 52, no. 4, pp. 929–933.

    CAS  Google Scholar 

  35. Demidov, A.I., Nikitin, A.V., and Morachevskii, A.G., Zh. Prikl. Khim., 1979, vol. 52, no. 9, pp. 1881–1882.

    CAS  Google Scholar 

  36. Bulatova, V.F. and Morachevskii, A.G., Zh. Prikl. Khim., 1977, vol. 50, no. 1, pp. 133–184.

    Google Scholar 

  37. Temnogorova, N.V., Demidov, A.I., and Morachevskii, A.G., Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 1979, no. 3, pp. 89–96.

    Google Scholar 

  38. Zhao, X.B., Cao, G.S., Lv, C.P., Zhang, L.J., Hu, S.H., Zhu, T.J., and Zhou, B.C., J. Alloys Compd., 2001, vol. 315, pp. 265–269.

    Article  CAS  Google Scholar 

  39. Larcher, D., Beattie, S., Mokrette, M., Edstrom, K., Jumas, J.C., and Tarascon, J.-M., J. Mater. Chem., 2007, vol. 17, pp. 3769–3772.

    Article  CAS  Google Scholar 

  40. Zhang, J., Yin, Y.-X., You, Y., Yan, Y., and Guo, Y.-G., Energy Technol., 2014, vol. 2, pp. 757–762.

    Article  CAS  Google Scholar 

  41. Frumkin, A.N., Izbrannye trudy. Elektrodnye protsessy (Selected Works. Electrode Processes), Moscow: Nauka, 1987.

    Google Scholar 

  42. Ding, N., Chen, S.F., Geng, D.S., Chien, S.W., An, T., Hor, T.S.A., Liu, Z.L., Yu, S.H., and Zong, Y., Adv. Energy Mater., 2015, vol. 5, no. 8, p. 1401999.

    Article  CAS  Google Scholar 

  43. Xu, J., Xin, S., Liu, J.-W., Wang, Z., Lei, Y., and Yu, S.-N., Adv. Funct. Mater., 2016, pp. 1580–1583.

    Google Scholar 

  44. He, J., Chen, Y., Lv, W., Wen, K., Wang, Z., Zhang, W., Li, Y., Qin, W., and He, W., ACS Nano, 2016, vol. 10, pp. 8837–8842.

    Article  CAS  PubMed  Google Scholar 

  45. He, J., Lv, W., Chen, Y.F., Wen, K.S., Hu, S., Zhang, W.L., Li, Y.R., Qin, W., and He, W.D., ASC Nano, 2017, vol. 11, no. 8, pp. 8144–8152.

    Article  CAS  Google Scholar 

  46. Li, Y., Hu, L.Y., Shen, B.L., Dai, C.L., and Xu, M.W., Electrochim. Acta, 2017, vol. 250, pp. 10–15.

    Article  CAS  Google Scholar 

  47. Huang, D.K., Li, S., Xiao, X., Cao, M.L., Gao, L., Xiang, Y.G., Chen, H., and Shen, Y., J. Power Sources, 2017, vol. 371, pp. 48–54.

    Article  CAS  Google Scholar 

  48. Yin, H., Yu, X.X., Yu, Y.W., Cao, M.I., Zhao, H., Li, C., and Zhu, M.Q., Electrochim. Acta, 2018, vol. 282, pp. 870–876.

    Article  CAS  Google Scholar 

  49. Li, Y., Wang, M.-Q., Chen, Y., Hu, L., Liu, T., Bao, S., and Xu, M., Energy Storage Mater., 2018, vol. 10, pp. 10–15.

    Article  Google Scholar 

  50. Li, Y., Zhan, Y., Xu, Q., Hu, L., Shen, B., Liu, H., Dai, C., Bao, S., and Xu, M., ChemSusChem, 2019, vol. 12, pp. 1196–1202.

    Article  CAS  PubMed  Google Scholar 

  51. Ge, X. and Yin, L., Energy Storage Mater., 2019, vol. 20, pp. 89–97.

    Article  Google Scholar 

  52. The Nobel Prize in Chemistry 2019, Kungl. Vetenkaps. Akad. Press Release, Oct. 9, 2019

  53. Whittingham, M.S., J. Chem. Soc., Chem. Commun., 1974, pp. 328–329.

    Article  Google Scholar 

  54. Whittingham, M.S. and Gamble, F.R., Mater. Res. Bull., 1975, vol. 10, no. 5, pp. 363–371.

    Article  CAS  Google Scholar 

  55. Whittingham, M.S., Science, 1976, vol. 192 (4944), pp. 1126–1127.

    Article  CAS  PubMed  Google Scholar 

  56. Whittingham, M.S., Prog. Solid State Chem., 1978, vol. 12, no. 1, pp. 41–99.

    Article  CAS  Google Scholar 

  57. Mizushima, K., Jones, P.S., Wiseman, P.J., and Goodenough, J.B., Mater. Res. Bull., 1980, vol. 15, no. 6, pp. 783–789.

    Article  CAS  Google Scholar 

  58. Thackeray, M.M., David, W.I.F., Bruce, P.G., and Goodenough, J.B., Mater. Res. Sci., 1983, vol. 18, pp. 461–462.

    CAS  Google Scholar 

  59. Padhi, A.K., Nanjundaswami, K.S., and Goodenough, J.B., J. Electrochem. Soc., 1997, vol. 144, pp. 1188–1194.

    Article  CAS  Google Scholar 

  60. Yoshino, A., Angew. Chem. Int. Ed., 2012, vol. 51, pp. 5798–5800.

    Article  CAS  Google Scholar 

  61. Winter, M., Besenhard, J.O., Spahr, M.E., and Novak, P., Adv. Mater., 1998, vol. 10, no. 10, pp. 725–763.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Morachevskii.

Ethics declarations

CONFLICT OF INTERESTS

A.G. Morachevskii is the member of the Editorial Board of Zhurnal Prikladnoi Khimii (Russian Journal of Applied Chemistry).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morachevskii, A.G. Lithium–Tellurium System: Thermodynamic and Electrochemical Studies and Prospects for Use in Chemical Current Sources. Russ J Appl Chem 93, 313–324 (2020). https://doi.org/10.1134/S1070427220030015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220030015

Keywords:

Navigation