Skip to main content
Log in

Photocatalytic Oxidation of Thiocianates in Aqueous Solutions

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The kinetic patterns of the photocatalytic oxidation of thiocyanates by persulfate under the influence of quasi-solar ultraviolet radiation (UV) were investigated. The influence of the main factors (pH, temperature of the reaction medium, nature of the catalyst, exposure time) on the efficiency of the oxidation of thiocyanates in the combined system {UV/S2O82–/Fe3+} was studied. It was established that the process of photocatalytic oxidation of thiocyanates proceeds via the ion-radical mechanism with the participation of reactive oxygen species generated in situ, mostly hydroxyl radicals and sulfate anion radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Gould, D.W., King, M., Mohapatra, B.R., Cameron, R.A., Kapoor, A., and Koren, D.W., Minerals Eng., 2012, vol. 34, pp. 38–47. https://doi.org/10.1016/j.mineng.2012.04.009

    Article  CAS  Google Scholar 

  2. Lazarev, N.V. and Levina, E.N., Vrednye veshchestva v promyshlennosti (Harmful Substances in Industry), Leningrad: Khimiya, 1977.

    Google Scholar 

  3. Bhunia, F., Saha, N.C., and Kaviraj, A., Bull. Environ. Contam. Toxicol., 2000, vol. 64, pp. 197–204. https://doi.org/10.1007/s001289910030

    Article  CAS  PubMed  Google Scholar 

  4. Normativy predel’no dopustimykh kontsentratsii vrednykh veshchestv v vodakh vodnykh ob’’ektov rybokhozyaistvennogo znacheniya. Prikaz Minsel’khoza Rossii ot 13.12.2016, no. 552 (Standards for Maximum Permissible Concentrations of Harmful Substances in the Waters Bodies of Fishery Importance. Order of the Ministry of Agriculture of Russia dated 13.12.2016, no. 552).

  5. Dash, R.R., Gaur, A. and Balomajumder, Ch., J. Hazard. Mater., 2009, vol. 163, pp. 1–11. https://doi.org/10.1016/j.jhazmat.2008.06.051

    Article  CAS  PubMed  Google Scholar 

  6. Ryu, B.-G., Kim, J., Yoo, G., Lim, J.-T., Kim, W., Han, J.-I., and Yang J.-W., Bioresour. Technol., 2014, vol. 158, pp. 166–173. https://doi.org/10.1016/j.biortech.2014.01.128

    Article  CAS  PubMed  Google Scholar 

  7. Huang, Y., Hou, X., Liu, S., and Ni, J., Chem. Eng. J., 2016, vol. 304, pp. 864–872. https://doi.org/10.1016/j.cej.2016.05.142

    Article  CAS  Google Scholar 

  8. Oulego, P., Collado, S., Laca, A., and Díaz, M., Chem. Eng. J., 2017, vol. 316, pp. 813–822. https://doi.org/10.1016/j.cej.2017.02.021

    Article  CAS  Google Scholar 

  9. Miklos, D.B., Remy, C., Jekel, M., Linden, K.G., Drewes, J.E., and Hübner, U., Water Res., 2018, vol. 139, pp. 118–131. https://doi.org/10.1016/j.watres.2018.03.042

    Article  CAS  PubMed  Google Scholar 

  10. Sharma, A., Ahmad, J., and Flora, S.-J.S., Environ. Res., 2018, vol. 167, pp. 223–233. https://doi.org/10.1016/j.envres.2018.07.010

    Article  CAS  PubMed  Google Scholar 

  11. Matzek, L.W. and Carter, K.E., Chemosphere, 2016, vol. 151, pp. 178–188. https://doi.org/10.1016/j.chemosphere.2016.02.055

    Article  CAS  PubMed  Google Scholar 

  12. Garkusheva, N., Matafonova, G., Tsenter, I., Beck, S., Batoev, V., and Linden, K., J. Environ. Sci. Health. Part A, 2017, vol. 52, pp. 849–855. https://doi.org/10.1080/10934529.2017.1312188

    Article  CAS  Google Scholar 

  13. Khandarkhaeva, M.S., Batoeva, A.A., Aseev, D.G., Sizykh, M.R., and Tsydenova, O.V., Ecotoxicol. Environ. Saf., 2017, vol. 137, pp. 35–41. https://doi.org/10.1016/j.ecoenv.2016.11.013

    Article  CAS  PubMed  Google Scholar 

  14. Xie, P., Zhang, L., Chen, J., Ding, J., Wan, Y., Wang, S., Wang, Z., Zhou, A., and Ma, J., Water Res., 2019, vol. 149, pp. 169–178. https://doi.org/10.1016/j.watres.2018.10.078

    Article  CAS  PubMed  Google Scholar 

  15. Khandarkhaeva, M.S., Batoeva, A.A., Aseev, D.G., and Sizykh, M.R., Russ. J. Appl. Chem., 2015, vol. 88, pp. 1605–1611. https://doi.org/10.1134/S1070427215100080?.

    Article  CAS  Google Scholar 

  16. Lahti, M., Vilpo, J., and Hovinen, J., J. Chem. Educ., 1999, vol. 76, no. 9, pp. 1281–1282. https://doi.org/10.1021/ed076p1281

    Article  CAS  Google Scholar 

  17. Kusic, H., Peternel, I., Ukic, S., Koprivanac, N., Bolanca, T., Papic, S., and Bozic, A.L., Chem. Eng. J., 2011, vol. 172, pp. 109–121. https://doi.org/10.1016/j.cej.2011.05.076

    Article  CAS  Google Scholar 

  18. Song, Y., Fang, G., Zhu, Ch., Zhu, F., Wu, S., Chen, N., Wu, T., Wang, Y., Gao, J., and Zhou, D., Chem. Eng. J., 2019, vol. 355, pp. 65–75. https://doi.org/10.1016/j.cej.2018.08.126

    Article  CAS  Google Scholar 

  19. Santos-Juanes, L., García Einschlag, F.S., and Amat, A.M., Arques, A., Chem. Eng. J., 2017, vol. 310, no. 2, pp. 484–490. https://doi.org/10.1016/j.cej.2016.04.114

    Article  CAS  Google Scholar 

  20. Budaev, S.L., Batoeva, A.A., and Tsybikova, B.A., J. Environ. Chem. Eng., 2014, vol. 2, pp. 1907–1911. https://doi.org/10.1016/j.jece.2014.08.010

    Article  CAS  Google Scholar 

  21. Zapol’skii, A.K. and Baran, A.A., Koagulyanty i flokulyanty v protsessakh ochistki vody: Svoistva. Poluchenie. Primenenie (Coagulants and Flocculants in Water Treatment Processes: Properties. Receiving. Application), Leningrad: Khimiya, 1987.

    Google Scholar 

  22. Neta, P., Huie, R.E., and Ross, A.B., J. Phys. Chem. Ref. Data, 1988, vol. 17, no. 3, pp. 1027–1284. https://doi.org/10.1063/1.555808

    Article  CAS  Google Scholar 

  23. Buxton, G.V., Greenstock, C.L., Helman, W.P., and Ross, A.B., J. Phys. Chem. Ref. Data, 1988, vol. 513, pp. 513–886. https://doi.org/10.1063/1.555805

    Article  Google Scholar 

  24. Liang, H.Y., Zhang, Y.-G., Huang, S.-B., and Hussain, I., Chem. Eng. J., 2013, vol. 218, pp. 384–391. https://doi.org/10.1016/j.cej.2012.11.093

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Batoeva.

Ethics declarations

FUNDING

The studies were financially supported by the Russian Foundation for Basic Research and the Government of the Republic of Buryatia (project RFBR-RB no. 18–48–030005) and the Federal State Budgetary Institution of Science of the Baikal Institute of Nature Management of the Siberian Branch of the Russian Academy of Sciences (project no. 0339-2019-0005).

CONFLICT OF INTERESTS

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batoeva, A.A., Sizykh, M.R. & Munkoeva, V.A. Photocatalytic Oxidation of Thiocianates in Aqueous Solutions. Russ J Appl Chem 93, 281–288 (2020). https://doi.org/10.1134/S1070427220020184

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220020184

Keywords

Navigation