Skip to main content
Log in

Selective Hydrogenation of Phenylacetylene on a Pd-Containing Catalyst Based on a Polymer Layered Substrate

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A Pd-containing catalyst based on a layered substrate obtained by the polymerization of 2,3,6,7,10,11-hexahydroxytriphenylene and terephthalic aldehyde was developed and studied. The process of liquid-phase hydrogenation of phenylacetylene was studied on the obtained catalyst. It was found that high selectivity for styrene (97%) with complete phenylacetylene conversion is achieved at a hydrogen pressure of 0.1 MPa and a temperature of 40˚C. It has been shown that the catalyst exhibits high stability—maintaining conversion and selectivity for 6 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Basimova, R.A., Pavlov, M.L., Myachin, S.I., Prokopenko, A.V., Askarova, A.V., Kutepov, B.I., and Sychkova S.A., Petrol. Chem., 2009, vol. 49, no. 5, p. 360. https://doi.org/10.1134/S096554410905003X

    Article  Google Scholar 

  2. Boronoev, M.P., Subbotina, E.S., Kurmaeva, A.A., Kardasheva, Y.S., Maksimov, A.L., and Karakhanov, E.A., Petrol. Chem., 2016, vol. 56, no. 2, pp. 109–120. https://doi.org/10.1134/S0965544116020055

    Article  CAS  Google Scholar 

  3. Boronoev, M.P., Zolotukhina, A.V., Ignatyeva, V.I., Terenina, M.V., Maximov, A.L., and Karakhanov, E.A., Macromol. Symposia, 2016, vol. 363, no. 1, pp. 57–63. https://doi.org/10.1002/masy.201500184

    Article  CAS  Google Scholar 

  4. Karakanov, E.A., Zolotukhina, A.V., Ivanov, A.O., and Maximov, A.L., Chem. Open., 2019, vol. 8, no. 3, pp. 358–381. https://doi.org/10.1002/open.201800280

    Article  CAS  Google Scholar 

  5. Karakhanov, E., Maximov, A., Kardasheva, Y., Semernina, V., Zolotukhina, A., Ivanov, A., Abbott, G., Rosenberg, E., and Vinokurov, V., ACS Appl. Mater. and Interfaces, 2014, vol. 6, no. 11, pp. 8807–8816. https://doi.org/10.1021/am501528a

    Article  CAS  Google Scholar 

  6. Karakhanov, E.A., Maximov, A.L., and Zolotukhina, A.V., Molecul. Catal., 2019, vol. 469, pp. 98–110. https://doi.org/10.1016/j.mcat.2019.03.005

    Article  CAS  Google Scholar 

  7. Shamsiev, R.S. and Finkelshtein, E.I., J. Mol. Modeling, 2018, vol. 24, no. 7, p. 143. https://doi.org/10.1007/s00894-018-3685-9

    Article  CAS  Google Scholar 

  8. Naranov, E.R., Dement’ev, K.I., Gerzeliev, I.M., Kolesnichenko, N.V., Roldugina, E.A., and Maksimov, A.L., Petrol. Chem., 2019, vol. 59, no. 3, pp. 247–261. https://doi.org/10.1134/S0965544119030101

    Article  CAS  Google Scholar 

  9. Belyaeva, E.V., Isaeva, V.I., Said-Galiev, E.E., Tkachenko, O.P., Savilov, S.V., Egorov, A.V., Kozlova, L.M., Sharf, V.Z., and Kustova, L.M., Russ. Chem. Bull., 2014, vol. 63, no. 2, pp. 396–403. https://doi.org/10.1007/s11172-014-0443-8

    Article  CAS  Google Scholar 

  10. Feng, X., Ding, X., and Jiang, D., Chem. Soc. Rev., 2012, vol. 41, no. 18, pp. 6010–6022. https://doi.org/10.1039/C2CS35157A

    Article  CAS  PubMed  Google Scholar 

  11. Kulikov, L.A., Akopyan, A.V., Polina, D.P., Zolotukhina, A.V., Maximov, A.L., Anisimov, A.V., and Karakhanov, E.A., Ind. Eng. Chem. Res., 2019, vol. 58, no. 45, pp. 20562–20572. https://doi.org/10.1021/acs.iecr.9b04076

    Article  CAS  Google Scholar 

  12. Boronoev, M.P., Shakirov, I.I., Ignat’eva, V.I., Maximov, A.L., and Karakhanov, E.A., Petrol. Chem., 2019, vol. 59, no. 12, pp. 1300–1306. https://doi.org/10.1134/S096554411912003X

    Article  CAS  Google Scholar 

  13. Ding, S.Y., Gao, J., Wang, Q., Zhang, Y., Song, W.-G., Su, C.-Y., and Wang, W., J. Am. Chem. Soc., 2011, vol. 133, no. 49, pp. 19816–19822. https://doi.org/10.1021/ja206846p

    Article  CAS  PubMed  Google Scholar 

  14. Pachfule, P., Panda, M.K., Kandambeth, S., Shivaprasad, S.M., Díaz, D.D., and Banerjee, R., J. Mater. Chem. A, 2014, vol. 2, no. 21, pp. 7944–7952. https://doi.org/10.1039/C4TA00284A

    Article  CAS  Google Scholar 

  15. Hiremath, U.S., Tetrahedron. Lett., 2013, vol. 54, no. 26, pp. 3419–3423. https://doi.org/10.1016/j.tetlet.2013.04.071

    Article  CAS  Google Scholar 

  16. Zniber, R., Achour, R., Cherkaoui, M.Z., Donnio, B., Gehringer, L., and Guillon, D., J. Mater. Chem., 2002, vol. 12, no. 8, pp. 2208–2213. https://doi.org/10.1039/B202677E

    Article  CAS  Google Scholar 

  17. Krebs, F.C., SchiΔdt, N.C., Batsberg, W., and Bechgaard, K., Synthesis, 1997, vol. 1997, no. 11, pp. 1285–1290. https://doi.org/10.1055/s-1997-3188

    Article  Google Scholar 

  18. Brun, M., Berthet, A., and Bertolini, J.P., J. Electron Spectroscopy and Related Phenomena, 1999, vol. 104, no. 1, pp. 55–60. https://doi.org/10.1016/S0368-2048(98)00312-0

    Article  CAS  Google Scholar 

  19. Powell, C.J., J. Electron Spectroscopy and Related Phenomena, 2012, vol. 185, no. 1, pp. 1–3. https://doi.org/10.1016/j.elspec.2011.12.001

    Article  CAS  Google Scholar 

  20. Markov, P.V., Mashkovsky, I.S., Bragina, G.O., Warnå, J., Gerasimov, E.Y., Bukhtiyarov, V.I., Stakheev, A.Y., and Murzin, D.Y., Chem. Eng. J., 2019, vol. 358, pp. 520–530. https://doi.org/10.1016/j.cej.2018.10.016

    Article  CAS  Google Scholar 

  21. Jackson, S.D. and Shaw, L.A., Appl. Catal. A: General, 1996, vol. 134, no. 1, pp. 91–99. https://doi.org/10.1016/0926-860X(95)00194-8

    Article  CAS  Google Scholar 

  22. Deng, D., Yang, Y., Gong, Y., Li, Y., Xu, X., and Wang, Y., Green Chem., 2013, vol. 15, no. 9, pp. 2525–2531. https://doi.org/10.1039/C3GC40779A

    Article  CAS  Google Scholar 

  23. Domínguez-Domínguez, S., Berenguer-Murcia, á., Linares-Solano, á., and Cazorla-Amorós, D., J. Catal., 2008, vol. 257, no. 1, pp. 87–95. https://doi.org/10.1016/j.jcat.2008.04.008

    Article  CAS  Google Scholar 

  24. Weerachawanasak, P., Mekasuwandumrong, O., Arai, M., Fujita S.-I., Praserthdam, P., and Panpranot, J., J. Catal., 2009, vol. 262, no. 2, pp. 199–205. https://doi.org/10.1016/j.jcat.2008.12.011

    Article  CAS  Google Scholar 

  25. Panpranot, J., Phandinthong, K., Sirikajorn, T., Arai, M., and Praserthdam, P., J. Mol. Catal. A: Chemical, 2007, vol. 261, no. 1, pp. 29–35. https://doi.org/10.1016/j.molcata.2006.07.05

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Shakirov.

Ethics declarations

FUNDING

The study was funded by a grant from the Russian Foundation for Basic Research (project no. 18-33-00987).

CONFLICT OF INTERESTS

Co-author A.L. Maksimov claims to be the editor-in-chief of the Journal of Applied Chemistry; the remaining co-authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakirov, I.I., Boronoev, M.P., Sinikova, N.A. et al. Selective Hydrogenation of Phenylacetylene on a Pd-Containing Catalyst Based on a Polymer Layered Substrate. Russ J Appl Chem 93, 258–267 (2020). https://doi.org/10.1134/S1070427220020159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220020159

Keywords

Navigation