Skip to main content
Log in

Synthesis of Multilayer Graphene Oxide in Electrochemical Graphite Dispersion in H2SO4

  • Composite Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The possibility of electrochemical dispersion of natural graphite powder in 83% H2SO4 was studied to produce multilayer graphene oxide. It has been shown that the decisive effect on the exfoliation of graphite particles is exerted by the processes of intercalation of graphite and the release of gaseous oxygen. It has been established that coarse-grained graphite powders with a particle size exceeding 200 Μm are more susceptible to electrochemical dispersion. The resulting carbon nanostructured materials tend to agglomerate in an aqueous dispersion. During sonication, the particle size of oxidized graphite decreases markedly with the formation of multilayer graphene oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Ioni, Y.V., Tkachev, S.V., Bulychev, N.A., and Gubin, S.P., Inorg. Mater., 2011, vol. 47, no. 6, pp. 597–602. https://doi.org/10.1134/S0020168511060100

    Article  CAS  Google Scholar 

  2. Dreyer, D.R., Jia, H.P., and Bielawski, C.W., Angewandte Chem. Int. Ed. Engl., 2010, vol. 49, no. 38, pp. 6813–6816. https://doi.org/10.1002/anie.201002160

    Article  CAS  Google Scholar 

  3. Qi, Li, Xinli, Guo, Yao, Zhang, Weijie, Zhang, Chuang, Ge, Li, Zhao, Xiaojuan, Wang, Hongyi, Zhang, Jian, Chen, Zengmei, Wang, and Litao, Sun, J. Mater. Sci. Technol., 2017, no. 33, pp. 793–799. https://doi.org/10.1016/j.jmst.2017.03.018

    Article  Google Scholar 

  4. Zaaba, N.I., Foo, K.L., Hashima, U., Tanb, S.J., Wei-Wen, Liu, and Voon, C.H., Proc. Enging., 2017, vol. 184. pp. 469–477. https://doi.org/10.1016/j.proeng.2017.04.118

    Article  CAS  Google Scholar 

  5. Hammers, W.S. and Offman, R.E., J. Am. Chem. Soc., 1958, vol. 80, no. 6, pp. 1339. https://doi.org/10.1021/ja01539a017

    Article  Google Scholar 

  6. Yakovlev, A.V., Zabud'kov, S.L., Yakovleva, E.V., and Finaenov, A.I., Russ. J. Appl. Chem., 2006, vol. 79, no. 10, pp. 1600–1604. https://doi.org/10.1134/S1070427206100077.

    Article  CAS  Google Scholar 

  7. Yakovlev, A.V., Yakovleva, E.V., Zabudkov, S.L., and Finaenov, A.I., Russ. J. Appl. Chem., 2010, vol. 83, no. 5, pp. 820–825. https://doi.org/10.1134/S1070427210050113

    Article  CAS  Google Scholar 

  8. Sheng, Yang, Lohe, M.R., Müllen, K., and Feng, X., Advanced Mater., 2016, no. 28, pp. 6213–6221. https://doi.org/10.1002/adma.201505326

    Article  CAS  Google Scholar 

  9. Peng, Wang, Tao, Yao, Bo, Sun, Xiaoliang, Fan, Sijie, Dong, Yun, Bai, and Yu, Shi., Colloids and Surfaces A: Physicochem. Eng. Aspects, 2017, vol. 513, pp. 396–401. https://doi.org/10.1016/j.colsurfa.2016.11.002

    Article  CAS  Google Scholar 

  10. Kunfeng, Chen and Dongfeng, Xue, J. Colloid Interface Sci., 2014, vol. 436, no. 15, pp. 41–46. https://doi.org/10.1016/j.jcis.2014.08.057

    Article  CAS  Google Scholar 

  11. Singh, R., and Tripathi, C.C., Mater. Today: Proceedings, 2018, vol. 5, pp. 973–979. https://doi.org/10.1016/j.matpr.2017.11.173

    Article  CAS  Google Scholar 

  12. Wang, Hui, Wei, Can, Zhu, Kaiyi, Zhang, Yu, Gong, Chunhong, Guo, Jianhui, Zhang, Jiwei, Yu, Laigui, and Zhang, Jingwei, ACS Appl. Mater. Interfaces, 2017, no. 9, pp. 34456–34466. https://doi.org/10.1021/acsami.7b09891

    Article  CAS  Google Scholar 

  13. Zhong, Yu, Lin, Tian, Zhiming, Simon, G.P., and Li, Dan, Mater. Today, 2014, vol. 18, no. 2, pp. 73–78. https://doi.org/10.1016/j.mattod.2014.08.01

    Article  Google Scholar 

  14. Cao, J., He, P., Mahdi, A.M., Zhao, X., Young, R.J., Derby, B., Kinloch, I.A., and Dryfe, R.A.W., J. Am. Chem. Soc., 2017, vol. 139, no. 48, pp. 17446-17456. https://doi.org/10.1021/jacs.7b08515

    Article  CAS  PubMed  Google Scholar 

  15. Yang, S., Ricciardulli, A.G., Liu, S., Dong, R., Lohe, M.R., Becker, A., Squillaci, M.A., Samori, P., Müllen, K., and Feng, X., Angew. Chem. Int. Ed Engl., 2017, vol. 56, no. 23, pp. 6669–6675. https://doi.org/10.1002/anie.201702076

    Article  CAS  PubMed  Google Scholar 

  16. Resmia, P.E., Palaniayappanb, L., Ramachandrana, T., and Satheesh, Babu, T.G., Mater. Today: Proceedings, 2018, vol. 5, pp. 16487–16493. https://doi.org/10.1016/j.matpr.2018.06.001

    Article  CAS  Google Scholar 

  17. Yu, P., Lowe, S.E., Simon, G.P., and Zhong, Yu.L., Current Opinion Colloid Interface Sci., 2015, vol. 20, nos. 5–6, pp. 329–338. https://doi.org/10.1016/j.cocis.2015.10.007

    Article  CAS  Google Scholar 

  18. Krivenko, A.G., Manzhos, R.A., and Kotkin, A.S., High Energy Chem., 2018, vol. 52, no. 3, pp. 272–273. https://doi.org/10.1134/S0018143918030074

    Article  CAS  Google Scholar 

  19. Parvez, K., Wu, Zh.-Sh., Li, R., Liu, X., Graf, R., Feng, X., and Mullen, K., J. Am. Chem. Soc., 2014, vol. 136, no. 16, pp. 6083–6091. https://doi.org/10.1021/ja5017156

    Article  CAS  Google Scholar 

  20. Gurzeda, B., Buchwald, T., Nocun, M., Bakowicz, A., and Krawczyk, P., RSC Advances, 2017, vol. 7, pp. 19904–19911. https://doi.org/10.1039/C7RA01678F

    Article  CAS  Google Scholar 

  21. Tian, Zhiming, Yu, Pei, Lowe, Sean, E., Pandolfo, Tony, G., Gengenbach, Thomas, R., Nairn, Kate, M., Song, Jingchao, Wang, Xin, Zhong, Yu, Lin, and Li, Dan, Carbon, 2017, vol. 112, pp. 185–191. https://doi.org/10.1016/j.carbon.2016.10.098

    Article  CAS  Google Scholar 

  22. Lowe, S.E., Shi, G., Zhang, Y., Qin, J., Wang, Sh., Uijtendaal, A., Sun, J., Jiang, L., Jiang, Sh., Qi, D., Al-Mamun, M., Liu, P., Zhong, Y.L., and Zhao, H., ACS Appl. Nano Mater., 2019, vol. 2, no. 2, pp. 867–878. https://doi.org/10.1021/acsanm.8b02126

    Article  CAS  Google Scholar 

  23. Kharitonov, A.P., Tkachev, A.G., Blohin, A.N., Dyachkova, T.P., Kobzev, D.E., Maksimkin, A.V., Mostovoi, A.S., and Alekseiko, L.N., Composites Sci. Technol., 2016, no. 134, pp. 161–167. https://doi.org/10.1016/j.compscitech.2016.08.017

    Article  CAS  Google Scholar 

  24. Tseluikin, V.N. and Koreshkova, A.A., Russ. J. Appl. Chem., 2015, vol. 88, no. 2, pp. 272–274. https://doi.org/10.1134/S1070427215020135

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Yakovlev.

Ethics declarations

FUNDING

The study was supported by the Russian Foundation for Basic Research as part of research project no. 18-29-19048.

CONFLICT OF INTERESTS

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovlev, A.V., Yakovleva, E.V., Tseluikin, V.N. et al. Synthesis of Multilayer Graphene Oxide in Electrochemical Graphite Dispersion in H2SO4. Russ J Appl Chem 93, 219–224 (2020). https://doi.org/10.1134/S1070427220020093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220020093

Keywords

Navigation