Skip to main content
Log in

Influence of the Reactivity of the Thermosetting Component in the Resol Resin/Ethylene Glycol System on the Properties of Pyrolyzates

  • Macromolecular Compounds and Polymeric Material
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Properties of pyrolyzates with the developed porous structure, prepared in the system consisting of phenol–formaldehyde resol resin and ethylene glycol after polymerization induced phase separation (PIPS), post-curing, and pyrolysis, were studied. The structure formed in the PIPS step is determined by the reactivity of the thermosetting component. With an increase in the rate of curing of the resol component, at equal PIPS temperature, the macropore size decreases and the cumulative volume of mesopores increases. An increase in the curing rate leads to an increase in the separation intensity and to a decrease in the degree of microphase separation. The pyrolysis yields an X-ray amorphous material with small inclusions of the crystalline graphite phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Dospekhi dlya “BURANA.” Materialy i tekhnologii VIAM dlya MKS “ENERGIYa-BURAN” (Armor for BURAN. Materials and Technologies of the All-Russia Research Institute of Aviation Materials for ENERGIYa-BURAN International Space Station), Kablov, E.N., Ed., Moscow: Fond Nauka i Zhizn, 2013.

  2. Kablov, E.N., Grashchenkov, D.V., Isaeva, N.V., Solntsev, S.S., and Sevast’yanov, V.G., Glass Ceram., 2012, vol. 69, nos. 3–4, pp. 109–112. https://doi.org/10.1007/s10717-012-9425-1

    Article  CAS  Google Scholar 

  3. Kablov, E.N., Grashchenkov, D.V., Isaeva, N.V., and Solntsev, S.S., Ross. Khim. Zh., 2010, vol. 54, no. 1, pp. 20–24.

    CAS  Google Scholar 

  4. Prokof’ev, V.A., Sorokin, O.Yu., Vaganova, M.L., and Lebedeva, Yu.E., Tr. Vseross. Nauch.-Issled. Inst. Aviats. Mater.: Elektron. Nauch.-Tekh. Zh., 2018, no. 11, article 06. https://doi.org/10.18577/2307-6046-2018-0-11-45-53

    Article  Google Scholar 

  5. Nam, G., Choi, S., Byun, H., Rhym, Y.-M., and Shim, S.E., Macromol. Res., 2013, vol. 21, no. 9, pp. 958–964. https://doi.org/10.1007/s13233-013-1114-6

    Article  CAS  Google Scholar 

  6. Nishihara. H., Mukai. S.R., and Tamon, H., Carbon, 2004, vol. 42, pp. 885–901. https://doi.org/10.1016/j.carbon.2004.01.075

    Article  Google Scholar 

  7. Horikawa, T., Ogawa, K., Mizuno, K., Hayashi, J., and Muroyama, K., Carbon, 2003, vol. 41, pp. 465–472. https://doi.org/10.1016/S0008-6223(02)00352-4

    Article  CAS  Google Scholar 

  8. Khaskov, M.A., Maklakov, S.S., Filenko, D.G., Stupnikova, T.V., and Avdeev, V.V., Vestn. Mosk. Univ., Ser. 2: Khimiya, 2006, vol. 47, no. 5, pp. 323–326.

    CAS  Google Scholar 

  9. Khaskov, M.A., Shestakov, A.M., Sinyakov, S.D., Sorokin, O.Yu., Gulyaev, A.I., and Zelenina, I.V., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2018, vol. 61, no. 11, pp. 31–37. https://doi.org/10.6060/ivkkt.20186111.3y

    Article  CAS  Google Scholar 

  10. Zhang, G., Liu, G., Shi, Z., and Qiao, G., RSC Adv., 2014, vol. 4, pp. 7068–7078. https://doi.org/10.1039/c3ra46490c

    Article  CAS  Google Scholar 

  11. Zhang, G. and Qiao, G., J. Chem. Phys., 2013, vol. 139, no. 13, p. 134903. https://doi.org/10.1063/1.4822295

    Article  Google Scholar 

  12. Zhang, G., Xiao, Z., and Qiao, G., Key Eng. Mater., 2012, vol. 512–515, pp. 403–406. https://doi.org/10.4028/www.scientific.net/KEM.512-515.403

    Article  CAS  Google Scholar 

  13. Wu, X., Zhu, Y., Pei, B., Cai, P., and Huang, Z., Mater. Lett., 2018, vol. 215, pp. 50–52. https://doi.org/10.1016/j.matlet.2017.12.049

    Article  CAS  Google Scholar 

  14. Xu, S., Qiao, G., Wang, H., Li, D., and Lu, T., Mater. Lett., 2008, vol. 62, nos. 21–22, pp. 3716–3718.. https://doi.org/10.1016/j.matlet.2008.04.

    Article  CAS  Google Scholar 

  15. Phenolic Resins. Chemistry, Applications, Standardization, Safety and Ecology, Gardziella, A., Pilato, L.A., and Knop,A., Eds., Berlin: Springer

  16. Monni, J., Alvila, L., and Pakkanen, T.T., Ind. Eng. Chem., 2007, vol. 46, pp. 6916–6924. https://doi.org/10.1021/ie070297a

    Article  CAS  Google Scholar 

  17. Patent US Publ. 2000

  18. Riikonen, J., Salonen, J., and Lehto, V.-P., J. Therm. Anal. Calorim., 2011, vol. 105, pp. 823–830. https://doi.org/10.1007/s10973-011-1337-8

    Article  CAS  Google Scholar 

  19. Satdinov, R.A., Istyagin, S.E., and Veshkin, E.A., Tr. Vseross. Nauch.-Issled. Inst. Aviats. Mater.: Elektron. Nauch.-Tekh. Zh., 2017, no. 3, article 09. https://doi.org/10.18577/2307-6046-2017-0-3-9-9

    Article  Google Scholar 

  20. Rozenberg, B.A., Ross. Khim. Zh., 2001, vol. XLV, nos. 5–6, pp. 23–31.

    Google Scholar 

  21. Martinez, I., Martin, M.D., Eceiza, A., Oyanguren, P., and Mondragona, I., Polymer, 2000, vol. 41, pp. 1027–1035. https://doi.org/10.1016/S0032-3861(99)00238-4

    Article  CAS  Google Scholar 

  22. Peng, L., Cui, J., and Li, S., Macromol. Chem. Phys., 2000, vol. 201, pp. 699–704.

    Article  CAS  Google Scholar 

  23. Wang, M., Yu, Y., Wu, X., and Li, S., Polymer, 2004, vol. 45, pp. 1253–1259. https://doi.org/10.1016/j.polymer.2003.12.037

    Article  CAS  Google Scholar 

  24. Swier, S. and Van Mele, B., Polymer, 2003, vol. 44, pp. 2689–2699. https://doi.org/10.1016/S0032-3861(03)00138-1

    Article  CAS  Google Scholar 

  25. Khaskov, M.A., Polym. Sci., Ser. B, 2017, vol. 59, no. 1, pp. 51–61. https://doi.org/10.1134/S1560090417010080

    Article  CAS  Google Scholar 

  26. Khaskov, M.A., Gulyaev, A.I., Sinyakov, S.D., and Ponomarenko, S.A., Mater. Chem. Phys., 2019, vol. 233, pp. 236–241. https://doi.org/10.1016/j.matchemphys.2019.05.060

    Article  CAS  Google Scholar 

  27. Oh, J. and Rey, A.D., Comput. Theor. Polym. Sci., 2001, vol. 11, pp. 205–217. https://doi.org/10.1016/S1089-3156(00)00013-1

    Article  Google Scholar 

  28. Valueva, M.I., Zelenina, I.V., Khaskov, M.A., and Gulyaev, A.I., Tr. Vseross. Nauch.-Issled. Inst. Aviats. Mater.: Elektron. Nauch.-Tekh. Zh., 2017, no. 10, article 09. https://doi.org/10.18577/2307-6046-2017-0-10-9-9

    Article  Google Scholar 

  29. Khaskov, M.A., Shestakov, A.M., Sorokin, O.Yu., Gulyaev, A.I., Davydova, E.A., Sulyanova, E.A., Sinyakov, S.D., Valueva, M.I., and Zelenina, I.V., Mater. Today: Proc., 2018, vol. 5, no. 12(3), pp. 26046–26051. https://doi.org/10.1016/j.matpr.2018.08.027

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Khaskov.

Ethics declarations

FUNDING

The study was financially supported by the Russian Foundation for Basic Research (project no. 17-03-01163).

CONFLICT OF INTERESTS

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaskov, M.A., Davydova, E.A., Valueva, M.I. et al. Influence of the Reactivity of the Thermosetting Component in the Resol Resin/Ethylene Glycol System on the Properties of Pyrolyzates. Russ J Appl Chem 93, 204–211 (2020). https://doi.org/10.1134/S107042722002007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042722002007X

Keywords

Navigation