Skip to main content
Log in

Effect of Carbon Component Characteristics on Texture and Electrochemical Properties of Polyaniline—Carbon Composites

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Results of a study of the texture and electrochemical properties of polyaniline—carbon composites used as electrodes supercapacitor are presented. The composites were prepared by polymerization of aniline in the presence of carbon materials with different texture characteristics and monomer content. It was shown that the texture characteristics and electrochemical properties of the carbon/polyaniline composite materials are determined by porous structure of the starting carbon material and by the content of the polymer. The maximum specific capacitance (465 F g−1) was obtained for the composite material based on carbon material with specific surface area of 2290 m2 g−1 and polyaniline content of 61 wt %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, L., Hu, X., Wang, Z., Sun, F., and Dorrell, D.G., Renewable and Sustainable Energy Rev., 2018, vol. 81, pp. 1868–1878. https://doi.org/10.1016/j.rser.2017.05.283

    Article  Google Scholar 

  2. Peng, C., Yan, X. Bin, Wang, R.T., Lang J.W., Ou, Y.J., and Xue, Q.J., Electrochim. Acta, 2013, vol. 87, pp. 401–408. https://doi.org/10.1016/j.electacta.2012.09.082

    Article  CAS  Google Scholar 

  3. Yun, Y.S., Yoon, G., Kang, K., and Jin, H.-J., Carbon, 2014, vol. 80, pp. 246–254. https://doi.org/10.1016/j.carbon.2014.08.063

    Article  CAS  Google Scholar 

  4. Gao, B., Zhou, H., and Yang, J., Appl. Surf. Sci., 2017, vol. 409, pp. 350–357. https://doi.org/10.1016/j.apsusc.2017.03.015

    Article  CAS  Google Scholar 

  5. Okamoto, H. and Kotaka, T., Polymer, 1998, vol. 39, pp. 4349–4358. https://doi.org/10.1016/S0032-3861(98)00013-5

    Article  CAS  Google Scholar 

  6. Salamifar, E., Mehrgardi, M.A., and Mousavi, M.F., SECM Electrochim. Acta, 2009, vol. 54, pp. 4638–4646. https://doi.org/10.1016/j.electacta.2009.03.069

    Article  CAS  Google Scholar 

  7. Zhang, H., Cao, G., Wang, W., Yuan, K., Xu, B., Zhang, W., Cheng, J., and Yang, Y., Electrochim. Acta, 2009, vol. 54, pp. 1153–1159. https://doi.org/10.1016/j.electacta.2008.09.004

    Article  CAS  Google Scholar 

  8. Yoon, S.B., Yoon, E.H., and Kim, K.B., J. Power Sources, 2011, vol. 196, pp. 10791–10797. https://doi.org/10.1016/j.jpowsour.2011.08.107

    Article  CAS  Google Scholar 

  9. Olad, A. and Gharekhani, H., J. Polym. Res. 2016, vol. 23. https://doi.org/10.1007/s10965-016-1031-4

  10. Patil, D.S., Pawar, S.A., Devan, R.S., Ma, Y.R., Bae, W.R., Kim, J.H., and Patil, P.S., Mater. Lett., 2014, vol. 117, pp. 248–251. https://doi.org/10.1016/j.matlet.2013.11.129

    Article  CAS  Google Scholar 

  11. Lebedeva, M.V., Ayupov, A.B., Yeletsky, P.M., Parmon, V.N., Int. J. Electrochem. Sci., 2018, vol. 13, pp. 3674–3690. https://doi.org/10.20964/2018.04.34

    Article  CAS  Google Scholar 

  12. Liu, H., Wang, Y., Gou, X., Qi, T., Yang, J., and Ding, Y., Mater. Sci. Eng., B, 2013, vol. 178, pp. 293–298. https://doi.org/10.1016/j.mseb.2012.12.002

    Article  CAS  Google Scholar 

  13. Ning, X., Zhong, W., and Wan, L., RSC Adv., 2016, vol. 6, pp. 25519–25524. https://doi.org/10.1039/C6RA00596A

    Article  CAS  Google Scholar 

  14. Zhang, L.L., Li, S., Zhang, J., Guo, P., Zheng, J., and Zhao, X.S., Chem. Mater., 2010, vol. 22, pp. 1195–1202. https://doi.org/10.1021/cm902685m

    Article  CAS  Google Scholar 

  15. Eletskii, P.M., Yakovlev, V.A., Fenelonov, V.B., and Parmon, V.N., Kinet. Catal., 2008, vol. 49, pp. 708–719. https://doi.org/10.1134/S0023158408050169

    Article  CAS  Google Scholar 

  16. Yeletsky, P.M., Yakovlev, V.A., Mel’gunov, M.S., and Parmon, V.N., Micropor. Mesopor. Mater., 2009, vol. 121, pp. 34–40. https://doi.org/10.1016/j.micromeso.2008.12.025

    Article  CAS  Google Scholar 

  17. Larichev, Y.V., Eletskii, P.M., Tuzikov, F.V., and Yakovlev, V.A., Catal. Ind., 2013, vol. 5, pp. 350–357. https://doi.org/10.1134/S2070050413040065

    Article  Google Scholar 

  18. Eletskii, P.M., Yakovlev, V.A., Kaichev, V.V., Yazykov, N.A., and Parmon, V.N., Kinet. Catal., 2008, vol. 49, pp. 321–328. https://doi.org/10.1134/S0023158408020201

    Google Scholar 

  19. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K.S.W., Pure and Appl. Chem., 2015, vol. 87, pp. 1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  20. Mel’gunov, M.S. and Ayupov, A.B., Micropor. Mesopor. Mater., 2017, vol. 243, pp. 147–153. https://doi.org/10.1016/j.micromeso.2017.02.019

    Article  Google Scholar 

  21. Trchová, M., Šeděnková, I., Konyushenko, E.N., Stejskal, J., Holler, P., and Ćirić-Marjanović, G., J. Phys. Chem. B, 2006, vol. 110, pp. 9461–9468. https://doi.org/10.1021/jp057528g

    Article  Google Scholar 

  22. Baibarac, M., Baltog, I., Lefrant, S., Mevellec, J.Y., and Chauvet, O., Chem. Mater., 2003, vol. 15, pp. 4149–4156. https://doi.org/10.1021/cm021287x

    Article  CAS  Google Scholar 

  23. Stejskal, J., Exnerová, M., Morávková, Z., Trchová, M., Hromádková, J., and Prokeš, J., Polym. Degrad. Stab., 2012, vol. 97, pp. 1026–1033. https://doi.org/10.1016/j.polymdegradstab.2012.03.006

    Article  CAS  Google Scholar 

  24. Dmitrieva, E. and Dunsch, L., J. Phys. Chem. B, 2011, vol. 115, pp. 6401–6411. https://doi.org/10.1021/jp200599f

    Article  CAS  Google Scholar 

  25. Zhou, S., Mo, S., Zou, W., Jiang, F., Zhou, T., and Yuan, D., Synth. Met., 2011, vol. 161, pp. 1623–1628. https://doi.org/10.1016/j.synthmet.2011.05.028

    Article  CAS  Google Scholar 

  26. Kinoshita, K., Carbon: Electrochemical and Physicochemical Properties, John and Wiley Sons, 1988, p. 533.

  27. Rahmanifar, M.S., Mousavi, M.F., Shamsipur, M., and Riahi, S., Polym. Degrad. Stab., 2006, vol. 91, pp. 3463–3468. https://doi.org/10.1016/j.polymdegradstab.2005.12.014

    Article  CAS  Google Scholar 

  28. Lebedeva, M.V., Yeletsky, P.M., Ayupov, A.B., Kuznetsov, A.N., Yakovlev, V.A., and Parmon, V.N., Mater. Renewable Sustainable Energy, 2015, vol. 4, pp. 1–9. https://doi.org/10.1007/s40243-015-0061-x

    Article  Google Scholar 

  29. Raymundo-Piñero, E., Kierzek, K., Machnikowski, J., and Béguin, F., Carbon, 2006, vol. 44, pp. 2498–2507. https://doi.org/10.1016/j.carbon.2006.05.022

    Article  Google Scholar 

  30. Chen, W.C., Wen, T.C., and Teng, H., Electrochim, Acta, 2003, vol. 48, pp. 641–649. https://doi.org/10.1016/S0013-4686(02)00734-X

    Article  CAS  Google Scholar 

  31. Salinas-Torres, D., Sieben, J.M., Lozano-Castelló, D., Cazorla-Amorós, D., and Morallón, E., Electrochim. Acta, 2013, vol. 89, pp. 326–333. https://doi.org/10.1016/j.electacta.2012.11.039

    Article  CAS  Google Scholar 

  32. Zhou, X., Li, L., Dong, S., Chen, X., Han, P., Xu, H., Yao, J., Shang, C., Liu, Z., and Cui, G., J. Solid State Electrochem., 2012, vol. 16, pp. 877–882. https://doi.org/10.1007/s10008-011-1435-3

    Article  CAS  Google Scholar 

  33. Lin, Y.R. and Teng, H., Carbon, 2003, vol. 41, pp. 2865–2871. https://doi.org/10.1016/S0008-6223(03)00424-X

    Article  CAS  Google Scholar 

  34. Bleda-Martinez, M.J., Morallón, E., and Cazorla-Amorós, D., Electrochim. Acta, 2007, vol. 52, pp. 4962–4968. https://doi.org/10.1016/j.electacta.2007.01.073

    Article  CAS  Google Scholar 

  35. Kuznetsov, A.N., Ayupov, A.B., Yeletsky, P.M., and Lebedeva, M.V., J. Electroanal. Chem., 2019, vol. 835, pp. 73–80. https://doi.org/10.1016/j.jelechem.2018.12.057

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Academy of Sciences, project no. AAAA-A17-11704171087-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Lebedeva.

Ethics declarations

The authors state that they have no conflict of interest to be disclosed in the present communication.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Prikladnoi Khimii, 2019, Vol. 92, No. 13, pp. 1704–1713.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedeva, M.V., Yeletsky, P.M. & Kozlov, D.V. Effect of Carbon Component Characteristics on Texture and Electrochemical Properties of Polyaniline—Carbon Composites. Russ J Appl Chem 92, 1780–1788 (2019). https://doi.org/10.1134/S1070427219120204

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427219120204

Keywords

Navigation