Skip to main content
Log in

Lithium-conducting Solid Electrolytes Synthesized by the Sol-Gel Method in the System Li7La3Zr2O12-Li5La3Nb2O12

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Solid electrolytes Li7−xLa3Zr2−xNbxO12 (x = 0.0–2.0) were synthesized by the sol-gel method, with Nb2O5 used as one of the starting compounds. The suggested synthesis procedure made it possible to lower the annealing temperature and shorten the annealing duration as compared with the solid-phase synthesis method, from 1200°C during 36 h to 1150°C during 1 h. The influence exerted by the doping of the Li7La3Zr2O12 compound in the Zr sublattice with niobium (Nb5+) on its crystal structure, morphology, and electrical conductivity. It was found that the compounds obtained with x > 0.1 are single-phase and have the Ia3d cubic structure. The scanning electron microscopy was used to examine the morphology and the grain size of the resulting solid electrolytes. The average grain size of the ceramic samples was found to be 1–4 µm. The resistivity of the solid electrolytes Li7−xLa3Zr2−xNbxO12 (x = 0.0–2.0) was measured by the method of electrochemical impedance. It was found that Li6.75La3Zr1.75Nb0.25O12 has the highest total lithium-ion conductivity at 25°C: 4.0 × 10−5 S cm−1. It was shown that the sol-gel method is promising and can be used to obtain solid electrolytes based on Li7La3Zr2O12 doped with Nb5+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramakumar, S., Deviannapoorani, C., Dhivya, L., Shankar, L.S., and Murugan, R., Prog. Mater. Sci., 2017, vol. 88, pp. 325–411. https://doi.org/10.1016/j.pmatsci.2017.04.007

    Article  CAS  Google Scholar 

  2. Yaroslavtsev, A.B., Russ. Chem. Rev., 2016, vol. 85, pp. 1255–1276. https://doi.org/10.1070/RCR4634

    Article  CAS  Google Scholar 

  3. Kammampata, S.P. and Thangadurai, V., Ionics, 2018, vol. 24, pp. 639–660. https://doi.org/10.1007/s11581-017-2372-7

    Article  Google Scholar 

  4. Liu, Q., Geng, Z., Han, C., Fu, Y., Li, S., He, Y., and Li, B., J. Power Sources, 2018, vol. 389, pp. 120–134. https://doi.org/10.1016/j.jpowsour.2018.04.019

    Article  CAS  Google Scholar 

  5. Zheng, F., Kotobuki, M., Song, S., Lai, M.O., and Lu, L., J. Power Sources, 2018, vol. 389, pp. 198–213. https://doi.org/10.1016/j.jpowsour.2018.04.022

    Article  CAS  Google Scholar 

  6. Hyooma, H. and Hayashi, K., Mater. Res. Bull., 1988, vol. 23, pp. 1399–1407. https://doi.org/10.1016/0025-5408(88)90264-4

    Article  CAS  Google Scholar 

  7. Mazza, D., Mater. Lett., 1988, vol. 7, pp. 205–207. https://doi.org/10.1016/0167-577X(88)90011-0

    Article  CAS  Google Scholar 

  8. Thangadurai, V., Kaack, H., and Weppner, W., J. Am. Ceram. Soc., 2003, vol. 86, pp. 437–440. https://doi.org/10.1111/j.1151-2916.2003.tb03318.x

    Article  CAS  Google Scholar 

  9. Murugan, R., Thangadurai, V., and Weppner, W., Angew. Chem., Int. Ed., 2007, vol. 46, pp. 7778–7781. https://doi.org/10.1002/anie.200701144

    Article  CAS  Google Scholar 

  10. Raskovalov, A.A., Il’ina, E.A., and Antonov, B.D., J. Power Sources, 2013, vol. 238, pp. 48–52. https://doi.org/10.1016/j.jpowsour.2013.03.049

    Article  CAS  Google Scholar 

  11. Li, Y., Han, J., Wang, C.-A., Vogel, S.C., Xie, H., Xu, M., and Goodenough, J.B., J. Power Sources, 2012, vol. 209, pp. 278–281. https://doi.org/10.1016/j.jpowsour.2012.02.100

    Article  CAS  Google Scholar 

  12. Bernuy-Lopez, C., Manalastas, W., Lopez del Amo, J.M., Aguadero, A., Aguesse, F., and Kilner, J.A., Chem. Mater., 2014, vol. 26, pp. 3610–3617. https://doi.org/10.1021/cm5008069

    Article  CAS  Google Scholar 

  13. Li, Y., Han, J.-T., Wang, C.-A., Xie, H., and Goodenough, J.B., J. Mater. Chem., 2012, vol. 22, pp. 15357–15361. https://doi.org/10.1039/c2jm31413d

    Article  CAS  Google Scholar 

  14. Ohta, S., Kobayashi, T., and Asaoka, T., J. Power Sources, 2011, vol. 196, pp. 3342–3345. https://doi.org/10.1016%2Fj.jpowsour.2010.11.089

    Article  CAS  Google Scholar 

  15. Zhao, P., Xiang, Y., Wen, Y., Li, M., Zhu, X., Zhao, S., Jin, Z., Ming, H., and Cao, G., J. Eur. Ceram. Soc., 2018, vol. 38, pp. 5454–5462. https://doi.org/10.1016/jjeurceramsoc.2018.08.037

    Article  CAS  Google Scholar 

  16. Il’ina, E.A., Andreev, O.L., Antonov, B.D., and Batalov, N.N., J. Power Sources, 2012, vol. 201, pp. 169–173. https://doi.org/10.1016/jjpowsour.2011.10.108

    Article  Google Scholar 

  17. Li, Y., Yang, T., Wu, W., Cao, Z., He, W., Gao, Y., Liu, J., and Li, G., Ionics, 2018, vol. 24, pp. 3305–3315. https://doi.org/10.1007/s11581-018-2497-3

    Article  CAS  Google Scholar 

  18. Rosero-Navarro, N.C., Yamashita, T., Miura, A., Higuchi, M., and Tadanaga, K., Solid State Ionics, 2016, vol. 285, pp. 6–12. https://doi.org/10.1016/j.ssi.2015.06.015

    Article  CAS  Google Scholar 

  19. Sherstobitova, E.A., Gubkin, A.F., Bobrikov, I.A., Kalashnova, A.V., and Pantyukhina, M.I., Electrochim. Acta, 2016, vol. 209, pp. 574–581. https://doi.org/10.1016/j.electacta.2016.05.113

    Article  CAS  Google Scholar 

  20. Rettenwander, D., Redhammer, G., Preishuber-Pflugl, F., Cheng, L., Miara, L., Wagner, R., Welzl, A., Suard, E., Doeff, M.M., Wilkening, M., Fleig, J., and Amthauer, G., Chem. Mater., 2016, vol. 28, no. 7, pp. 2384–2392. https://doi.org/10.1021/acs.chemmater.6b00579

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The materials obtained in the study were certified on the equipment of the Collective Use Center “Substance composition” at the Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Science.

Funding

The study was financially supported by the RF Presidential grant no. MK-1382.2019.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Il’ina.

Ethics declarations

The authors state that there is no conflict of interest to be disclosed in the present communication.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Prikladnoi Khimii, 2019, Vol. 92, No. 12, pp. 1543–1549.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’ina, E.A., Lyalin, E.D., Antonov, B.D. et al. Lithium-conducting Solid Electrolytes Synthesized by the Sol-Gel Method in the System Li7La3Zr2O12-Li5La3Nb2O12. Russ J Appl Chem 92, 1657–1663 (2019). https://doi.org/10.1134/S107042721912005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042721912005X

Keywords

Navigation