Skip to main content
Log in

Role of Solvent Deasphalting in the Modern Oil Refining Practice and Trends in the Process Development

  • Reviews
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Various implementations and various combinations of solvent deasphalting with the modern processes of deep oil refining are considered, and the ways of processing the separation products formed are demonstrated. Specific features of the main technologies used in Russia and other countries are discussed. Particular attention is paid to perspective technologies implementing the fuel direction of the process using both traditional hydrocarbon solvents and nontraditional solvents such as organic carbonates and carbon dioxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grebennikov, M., Neft Ross., 2015, no. 4, pp. 34–38.

  2. Magomedov, R.N., Popova, A.Z., Maryutina, T.A., Kadiev, K.M., and Khadzhiev, S.N., Petrol. Chem., 2015, vol. 55, no. 6, pp. 423–443. https://doi.org/10.1134/S0965544115060092

    Article  CAS  Google Scholar 

  3. Ancheyta, J., in Problems during Upgrading and Refining of Heavy Petroleum, CRC, 2013, ch. 1.5, pp. 34–41.

  4. Furimsky, E., Appl. Catal. A: General, 1998, vol. 171, pp. 177–206. https://doi.org/10.1016/S0926-860X(98)00086-6

    Article  CAS  Google Scholar 

  5. Morel, F., Kressmann, S., Harle, V., and Kasztelan, S., Stud. Surf. Sci. Catal., 1997, vol. 106, pp. 1–16. https://doi.org/10.1016/S0167-2991(97)80003-1

    Article  CAS  Google Scholar 

  6. O’Connor, P., Verlaan, J.P.J., and Yanik, S.J., Catal. Today, 1998, vol. 43, pp. 305–313. https://doi.org/10.1016/S0920-5861(98)00159-X

    Article  Google Scholar 

  7. Yuan, B., Tang, Z., Chung, K.H., Wei, Q., Sun, X., Xu, Z., Zhao, S., and Xu, C., Oil Gas J., 2016, June 6, pp. 70–77.

  8. Solodova, N.K. and Terent’eva, N.A., Vestn. Kazansk. Tekhnol. Univ., 2012, vol. 15, pp. 141–147.

    Google Scholar 

  9. Speight, J.G., in The Chemistry and Technology of Petroleum, CRC, 2006, 4th ed., Ch. 19, pp. 582–602.

  10. Kohli, K., Prajapati, R., Maity, S.K., Sau, M., and Garg, M.O., Fuel, 2016, vol. 175, pp. 264–273. https://doi.org/10.1016/j.fuel.2016.02.036.

    Article  CAS  Google Scholar 

  11. Telyashev, E.G., Khairudinov, I.R., and Akhmetov, M.M., Territ. Neftegaz, 2006, no. 4, pp. 66–70.

  12. Arora, A. and Mukherjee, U., in National Petrochemical & Refiners Association Annual Meet., San Antonio, TX, March 20–22, 2011, p. 15.

  13. Gillis, D., VanWees, M., and Zimmerman, P., Upgrading Residues to Maximize Distillate Yields, UOP LLC, A Honeywell Company, 2009. http://www.uop.com/?document=uop-uniflex-slurry-treatment-alternative-paper&download=1.

  14. Patent US 20020005374A1, Publ. 2001.

  15. Adams, J.J., Energy Fuels, 2014, vol. 28, pp. 2831–2856. https://doi.org/10.1021/ef500282p

    Article  CAS  Google Scholar 

  16. Hosseinpour, N., Mortazavi, Y., Bahamian, A., Khodatars, L., and Khodadadi, A.A, Appl. Catal. A: General, 2014, vol. 477, pp. 159–171. https://doi.org/10.1016/j.apcata.2014.03.017

    Article  CAS  Google Scholar 

  17. Castañeda, L.C., Muñoz, J.A.D., and Ancheyta, J., Fuel, 2012, vol. 100, pp. 110–127. https://doi.org/10.1016/j.fuel.2012.02.022

    Article  Google Scholar 

  18. Baldassari, M. and Mukherjee, U., in American Fuel & Petrochemical Manufacturers Annual Meet., San Diego, CA, March 11–13, p012. P. 14.

  19. Gray, M.R., Upgrading Oil Sands Bitumen and Heavy Oil, Edmonton (Canada): Univ. of Alberta Press, 2015, 1st ed., p. 449.

    Google Scholar 

  20. Abdrakhmanov, R.A., Kopylov, A.Yu., Salakhov, Safina, I.R., and Mosunova, L.Yu., Vestn. Kazansk. Tekhnol. Univ., 2014, vol. 17, no. 10, pp. 190–194.

    CAS  Google Scholar 

  21. Sultanov, F.M., Power-saving Technology for Solvent Deasphalting of Petroleum Residues, Doctoral Dissertation, Ufa, 2010.

  22. Handbook of Petroleum Refining Processes, Meyers, R.A., Ed., McGraw-Hill, 2003.

  23. Motaghi, M., Shree, K., and Krishnamurthy, S., Hydrocarbon Process., 2010, March, pp. 55–58.

  24. Bernetti, A., De Franchis, M., Moretta, J.C., and Shah, P.M., Petrol. Technol. Q., 2000, Q 4, pp. 1–7.

  25. Sultanov, F.M., Khairudinov, I.R., Shakirov, I.B., and Zainetdinova, A.R., Mir Nefteprod. Vestn. Neft. Komp., 2016, no. 4, pp. 9–11.

  26. Patent RU 2107084, Publ. 1998.

  27. Patent RU 2142493, Publ. 1999.

  28. Moor, E.V., Koshkarov, V.E., and Rakitin, V.A., Aktual’n. Vopr. Proekt. Avtomob. Dorog, 2010, no. 1, pp. 180–187.

  29. Patent RU 2074224, Publ. 1997.

  30. Gladkikh, I.F., Cherkasov, N.M., and Sergeev, V.I., Korroz. Territ. Neftegaz, 2011, no. 1 (18), pp. 62–65.

  31. Khairudinov, I.R., Akhmetov, M.M., and Telyashev, E.G., Ross. Khim. Zh., 2006, vol. L, no. 1, pp. 25–28.

    Google Scholar 

  32. Ramirez-Corredores, M.M., The Science and Technology of Unconventional Oils: Finding Refining Opportunities, ch. 5: Bottom of the Barrel Upgrading Technologies, Academic, 2017, pp. 387–410.

  33. Patent US 4290880, Publ. 1981.

  34. Iqbal, R., Khan, A., Eng, O., and Floyd, R., Petrol. Technol. Q., 2008, Q 2, pp. 1–5.

  35. Motaghi, M., Shree, K., and Krishnamurthy, S., Hydrocarbon Process., 2010, Febr., pp. 35–38.

  36. Patent US 4686027, Publ. 1987.

  37. Houde, E.J. and McGrath, M.J., Abstracts of Papers, IDTC Conf., London, Febr. 2006, p. 11.

  38. Speight, J., The Desulfurization of Heavy Oils and Residua, CRC, 1999, 2nd ed., p. 480.

  39. Sultanov, F.M., Chem. Technol. Fuels Oils, 2009, vol. 45, no. 3, pp. 157–163.

    Article  CAS  Google Scholar 

  40. Sultanov, F.M., Khairudinov, I.R., Telyashev, E.G., Kuznetsov, V.Yu., and Kuznetsov, D.V., Neftepererab. Neftekhim., 2008, no. 6, pp. 25–28.

  41. Patent RU 2232792, Publ. 2004.

  42. Sultanov, F.M., Akhmetov, S.A., and Sultanbaev, A.Yu., Neftegaz. Delo (electronic journal), 2014, no. 5, pp. 313–323.

  43. Khairudinov, I.R., Sultanov, F.M., Kut’in, Yu.A., Tikhonov, A.A., and Telyashev, R.G., Mir Nefteprod. Vestn. Neft. Komp., 2011, no. 3, pp. 17–19.

  44. Gimatdinov, R.R. and Fakhrutdinov, R.Z., Vestn. Tekhnol. Univ., 2016, vol. 19, no. 11, pp. 58–62.

    Google Scholar 

  45. Zhao, S., Xu, C., Sun, X.W., Chung, K.H., and Xiang, Y., Oil Gas J., 2010, vol. 108(12), pp. 52–58.

    CAS  Google Scholar 

  46. Chung, K., Xu, Z., Sun, X., Zhao, S., and Xu, C., Petrol. Technol. Q., 2006, Q 4, pp. 99–105.

  47. Shi, Q., Zhao, S., Zhou, Y., Gao, J., and Xu, C., Rev. Chem. Eng., 2019, p. 19. https://doi.org/10.1515/revce-2017-0077

    Article  Google Scholar 

  48. Patent US 2007/0007168, Publ. 2007.

  49. Yu, C., Zhang, L., Guo, X., Xu, Z., Sun, X., Xu, C., and Zhao, S., Energy Fuels, 2015, vol. 29, pp. 1534–1542. https://doi.org/10.1021/ef502696p

    Article  CAS  Google Scholar 

  50. Fan, M., Sun, X., Xu, Z., Zhao, S., Xu, C., and Chung, K.H., Energy Fuels, 2011, vol. 25, pp. 3060–3067. https://doi.org/10.1021/ef2003359

    Article  CAS  Google Scholar 

  51. Zhao, Y. and Wei, F., Fuel Process. Technol., 2008, vol. 89, pp. 933–940. https://doi.org/10.1016/j.fuproc.2008.03.008

    Article  CAS  Google Scholar 

  52. Zhao, Y. and Wei, F., Fuel Process. Technol., 2008, vol. 89, pp. 941–948. https://doi.org/10.1016/j.fuproc.2008.03.010

    Article  CAS  Google Scholar 

  53. Patent US 2013/0277275 A1, Publ. 2013.

  54. Patent US 5466365, Publ. 1995.

  55. Patent US 5346615, Publ. 1994.

  56. Patent US 5354454, Publ. 1994.

  57. Ni, H., Hsu, C.S., Lee, P., Wright, J., Chen, R., Xu, C., and Shi, Q., Fuel, 2015, vol. 141, pp. 74–81. https://doi.org/10.1016/j.fuel.2014.09.126

    Article  CAS  Google Scholar 

  58. Liu, Z.M., Yang, G.Y., Lu, Y., Han, B.X., and Yan, H.K., J. Supercrit. Fluids, 1999, vol. 16, pp. 27–31. https://doi.org/10.1016/S0896-8446(99)00018-2

    Article  Google Scholar 

  59. Lodi, L., Concha, V.O.C., Medina, L.C., Filho, R.M., and Wolf Maciel, M.R., Petrol. Sci. Technol., 2015, vol. 33, pp. 481–486. https://doi.org/10.1080/10916466.2014.988871

    Article  CAS  Google Scholar 

  60. Magomedov, R.N., Pripakhaylo, A.V., and Maryutina, T.A., J. Supercrit. Fluids, 2017, vol. 119, pp. 150–158. https://doi.org/10.1016/j.supflu.2016.08.022

    Article  CAS  Google Scholar 

  61. Pripakhaylo, A.V., Magomedov, R.N., and Maryutina, T.A., J. Anal. Chem., 2019, vol. 74, no. 4, pp. 401–409. https://doi.org/10.1134/S1061934819040105

    Article  CAS  Google Scholar 

  62. Patent RU 2694533, Publ. 2019.

Download references

Funding

The study was financially supported by the Ministry of Science and Higher Education of the Russian Federation, contract no. 03.G25.31.0238 of April 28, 2017 for implementation of the complex project on the development of high-tech production: Development of Solvent Technology for Refining of Heavy Petroleum Feedstock. The R&D and designing works whose results are reported in the paper were done at the Moscow Institute of Physics and Technology as the head executor of contract no. 03.G25.31.0238 of April 28, 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pripakhaylo.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Prikladnoi Khimii, 2019, Vol. 92, No. 13, pp. 1641–1656.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magomedov, R.N., Pripakhaylo, A.V., Maryutina, T.A. et al. Role of Solvent Deasphalting in the Modern Oil Refining Practice and Trends in the Process Development. Russ J Appl Chem 92, 1634–1648 (2019). https://doi.org/10.1134/S1070427219120036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427219120036

Keywords

Navigation