Abstract
Possibility of using polydecylmethylsiloxane in the pervaporation removal of organic compounds from aqueous media was examined. It was shown for the example of the system with 1 wt % n-butanol in water that this material is characterized by a large separation factor (69), which twice exceeds the separation factor of the commercial membrane polymer polydimethylsiloxane. A composite membrane was produced on the basis of polydecylmethylsiloxane. The selective layer was deposited from a solution of the polymer by the touching method onto an MFFK-1 domestic microfiltration substrate. Pervaporation experiments with the new composite membranes based on polydecylmethylsiloxane were used to determine the optimal separation mode of the water–butanol mixture: delivery rate of the mixture to be separated, 1.2 cm s–1; and separation temperature 40°C. It was shown that, at a selective layer thickness of about 4.5 μm, it is possible to reach a permeability of the PDecMS/ MFFK-1 membrane that is comparable with the permeability for 1-butanol of commercial composite membranes (5.2 mol m–2 h kPa–1). However, the butanol/water selectivity for the PDecMS/MFFK-1 membrane is 3–7 times that of the commercial membranes.
This is a preview of subscription content, access via your institution.
References
Irdisova, S.F., Ochistka stochnykh vod proizvodstva slozhnykh efirov (Purification of Wastewater Formed in Manufacture of Esters), Ivanovo, 2009.
Srinivasan, K., Palanivelu, K., and Gopalakrishnan, A.N., Chem. Eng. Sci., 2007, vol. 62, no. 11, pp. 2905–2914. https://doi.org/10.1016/j.ces.2007.02.028
Porutskii, G.V., Biokhimicheskaya ochistka stochnykh vod organicheskikh proizvodstv (Biochemical Purification of Wastewater from Organic Production Shops), Moscow: Khimiya, 1975, pp. 25–38.
Tijmensen, M.J., Faai, A.P., Hamelinck, C.N., and van Hardeveld, M.R., Biomass Bioenergy, 2002, vol. 23, no. 2, pp. 129–152. https://doi.org/10.1016/S0961-9534(02)00037-5
Oudshoorn, A., van der Wielen, L.A.M., and Straathof, A.J.J., Ind. Eng. Chem. Res., 2009, vol. 48 pp. 7325–7336. https://doi.org/10.1021/ie900537w
Vane, L.M., J. Chem.Tech. Biotech., 2005, vol. 80, no. 6, pp. 603–629. https://doi.org/10.1002/jctb.1265
Shao, P. and Huang, R.Y.M., J. Membr. Sci., 2007, vol. 287, no. 2, pp. 162–179. https://doi.org/10.1016/j.memsci.2006.10.043
Liu, G., Wei, W., and Jin, W., ACS Sustain. Chem. Eng., 2013, vol. 2, no. 4, pp. 546–560. https://doi.org/10.1021/sc400372d
Rozicka, A., Niemistö, J., Keiski, R.L., and Kujawski, W., J. Membr. Sci., 2014, vol. 453 pp. 108–118. https://doi.org/10.1016/j.memsci.2013.10.065
Fadeev, A.G., Selinskaya, Y.A., Kelley, S.S., Meagher, M.M., Litvinova, E.G., Khotimsky, V.S., and Volkov, V.V., J. Membr. Sci., 2001, vol. 186 pp. 205–217. https://doi.org/10.1016/S0376-7388(00)00683-9
Claes, S., Vandezande, P., Mullens, S., De Sitter, K., Peeters, R., and Van Bael, M.K., J. Membr. Sci., 2012, vol. 389 pp. 265–271. https://doi.org/10.1016/j.memsci.2011.10.035
Borisov, I.L., Kujawska, A., Knozowska, K., Volkov, V.V., and Kujawski, W., J. Membr. Sci., 2018, vol. 564 pp. 1–9. https://doi.org/10.1016/j.memsci.2018.07.001
Golubev, G.S., Borisov, I.L., and Volkov, V.V., Russ. J. Appl. Chem., 2018, vol. 91, no. 8, pp. 1375–1381. https://doi.org/10.1134/S1070427218080177
Shalygin, M.G., Kozlova, A.A., Netrusov, A.I., and Teplyakov, V.V., Petrol. Chem., 2016, vol. 56, no. 10, pp. 977–986. https://doi.org/10.1134/S0965544116100108
Teplyakov, V.V., Shalygin, M.G., Kozlova, A.A., Chistyakov, A.V., Tsodikov, M.V., and Netrusov, A.I., Petrol. Chem., 2017, vol. 57, no. 9, pp. 747–762. https://doi.org/10.1134/S0965544117090080
Teplyakov, V.V., Shalygin, M.G., Kozlova, A.A., and Netrusov, A.I., Petrol. Chem., 2018, vol. 58, no. 11, pp. 949–957. https://doi.org/10.1134/S0965544118110075
Volkov, A.V., Novitsky, E.G., Borisov, I.L., Vasilevsky, V.P., and Volkov, V.V., Sep. Purif. Technol., 2016, vol. 171 pp. 191–196. https://doi.org/10.1016/j.seppur.2016.07.038
Volkov, A.V., Volkov, V.V., and Khotimskii, V.S., Polym. Sci., Ser. A, 2009, vol. 51, nos. 11–12, pp. 1367–1382. https://doi.org/10.1134/S0965545X09110212
Grushevenko, E.A., Borisov, I.L., Bakhtin, D.S., Bondarenko, G.N., Levin, I.S., and Volkov, A.V., React. Funct. Polym., 2019, vol. 134 pp. 156–165. https://doi.org/10.1016/j.reactfunctpolym.2018.11.013
Grushevenko, E.A., Borisov, I.L., Bakhtin, D.S., Legkov, S.A., Bondarenko, G.N., and Volkov, A.V., Petrol. Chem., 2017, vol. 57, no. 4, pp. 334–340. https://doi.org/10.1134/S0965544117040028
Dibrov, G.A., Novitsky, E.G., Vasilevsky, V.P., and Volkov, V.V., Petrol. Chem., 2014, vol. 54, no. 7, pp. 568–572. https://doi.org/10.1134/S0965544114070056
Borisov, I.L., Grushevenko, E.A., Podtynnikov, I.A., Bakhtin, D.S., and Bondarenko, G.N., Petrol. Chem., 2018, vol. 58, no. 13, pp. 1113–1122. https://doi.org/10.1134/S0965544118060038
Borisov, I.L., Golubev, G.S., Vasilevsky, V.P., Volkov, A.V., and Volkov, V.V., J. Membr. Sci., 2017, vol. 523 pp. 291–300. https://doi.org/10.1016/j.memsci.2016.10.009
Kujawska, A., Knozowska, K., Kujawa, J., and Kujawski, W., Sep. Purif. Technol., 2016, vol. 159 pp. 68–80. https://doi.org/10.1016/j.seppur.2015.12.057
Golubev, G.S., Borisov, I.L., and Volkov, V.V., Petrol. Chem., 2018, vol. 58, no. 11, pp. 975–982. https://doi.org/10.1134/S0965544118110014
Qi, R., Zhao, C., Li, J., Wang, Y., and Zhu, S., J. Membr. Sci., 2006, vol. 269 pp. 94–100. https://doi.org/10.1016/j.memsci.2005.06.022
Qureshi, N. and Blaschek, H.P., Renewable Energy, 2001, vol. 22, no. 4, pp. 557–564. https://doi.org/10.1016/S0960-1481(00)00108-7
Raghunath, B. and Hwang, S.T., J. Membr. Sci., 1992, vol. 65, nos. 1–2, pp. 147–161. https://doi.org/10.1016/0376-7388(92)87061-2
Acknowledgments
The authors are grateful to the Center of Collective Use of Institute of Petrochemical Synthesis, Russian Academy of Sciences, for providing the equipment.
Funding
The study was financially supported by the Russian Science Foundation (project no. 17-79-20296).
Author information
Authors and Affiliations
Corresponding author
Additional information
Conflict of Interest
The authors state that they have no conflict of interest to be disclosed in the present communication.
Russian Text © The Author(s), 2019, published in Zhurnal Prikladnoi Khimii, 2019, Vol. 92, No. 11, pp. 1488–1496.
Rights and permissions
About this article
Cite this article
Grushevenko, E.A., Podtynnikov, I.A. & Borisov, I.L. High-Selectivity Pervaporation Membranes for 1-Butanol Removal from Wastewater. Russ J Appl Chem 92, 1593–1601 (2019). https://doi.org/10.1134/S1070427219110168
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1070427219110168
Keywords
- hydrophobic pervaporation
- polydecylmethylsiloxane
- membrane technologies
- isolation of n-butanol
- selective membrane