Skip to main content
Log in

Study of Transport Properties and Microstructure of Lithium-Conducting Li0.33La0.56TiO3 Ceramic

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Methods of X-ray diffraction analysis, impedance spectroscopy, and scanning electron microscopy were used to examine how thermal treatment modes affect the transport properties and microstructure of a lithium-conducting oxide ceramic of composition Li0.33La0.56TiO3, produced from powders synthesized by the sol-gel method. It was found that the cubic structure of Li0.33La0.56TiO3 can be stabilized as a result of quenching after the high-temperature of sintering at 1150°C. The conditions were determined in which Li0.33La0.56TiO3 ceramic samples can be obtained with bulk ion conductivity of ∼1 × 10−3 S cm−1 at 20°C, which corresponds to the maximum values for the ceramic based on lithium-lanthanum titanate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun, Y., Guan, P., Liu, Y., Xu, H., Li, S., and Chu, D., Crit. Rev. Solid State, 2019, vol. 44, no. 4, pp. 265–282. https://doi.org/10.1080/10408436.2018.1485551

    Article  CAS  Google Scholar 

  2. Inaguma, Y. and Nakashima, M., J. Power Sources, 2013, vol. 228, pp. 250–255. https://doi.org/10.1016/j.jpowsour.2012.11.098

    Article  CAS  Google Scholar 

  3. Wolfenstine, J., Allen, J.L., Read, J., Sakamoto, J., and Gonalez-Doncel, G., J. Power Sources, 2010, vol. 195, pp. 4124–4128. https://doi.org/10.1016/j.jpowsour.2009.12.109

    Article  CAS  Google Scholar 

  4. Belous, A.G., Kolbasov, G.Y., Boldyrev, E.I., and Kovalenko, L.L., Russ. J. Electrochem., 2015, vol. 51, no. 12, pp. 1162–1167. https://doi.org/10.1134/S1023193515120022.

    Article  CAS  Google Scholar 

  5. Lu, D.-L., Dai, G.-Z., Yao, Y.-B., Tao, T., Liang, B., and Lu, S.-G., J. Inorg. Mater., 2018, vol. 33, no. 10, pp. 1077–1082. https://doi.org/10.15541/jim20180049

    Article  Google Scholar 

  6. Bohnke, O., Solid State Ionics, 2008, vol. 179, pp. 9–15. https://doi.org/10.1016/j.ssi.2007.12.022

    Article  CAS  Google Scholar 

  7. Zhang, Q., Schmidt, N., Lan, J., Kim, W., and Cao, G., Chem. Commun., 2014, vol. 50, pp. 5593–5596. https://doi.org/10.1039/c4cc00335g

    Article  CAS  Google Scholar 

  8. Cao, C., Li, Z.-B., Wang, X.-L., Zhao X.-B., and Han, W.-Q., Front. Energy Res., 2014, vol. 2, A.25, pp. 1–10. https://doi.org/10.3389/fenrg.2014.00025

    Google Scholar 

  9. Zheng, Z., Fang, H., Liu, Z., and Wang, Y., J. Electrochem. Soc., 2015, vol. 162, no. 1, pp. A244–A248. https://doi.org/10.1149/2.0011503jes

    Article  CAS  Google Scholar 

  10. Zheng, Z., Fang, H., Yang, F., Liu, Z., and Wang, Y., J. Electrochem. Soc., 2014, vol. 161, no. 4, pp. A473–A479. https://doi.org/10.1149/2.006404jes

    Article  CAS  Google Scholar 

  11. Li, J., Wen, Z., Xu, X., and Zhang, J., Ceram. Int., 2007, vol. 33, pp. 1591–1595. https://doi.org/10.1016/j.ceramint.2006.06.008

    Article  CAS  Google Scholar 

  12. Kobylyanskaya, S.D., Gavrilenko, O.N., and Belous, A.G., Russ. J. Inorg. Chem., 2013, vol. 58, no. 6, pp. 637–643. https://doi.org/10.1134/S0036023613060132

    Article  CAS  Google Scholar 

  13. Pham, Q.N., Bohnké, C., Crosnier-Lopez, M.-P., and Bohnké, O., Chem. Mater., 2006, vol. 18, pp. 4385–4392. https://doi.org/10.1021/cm060605f

    Article  CAS  Google Scholar 

  14. Kunshina, G.B., Bocharova, I.V., and Ivanenko, VI., Russ. J. Appl. Chem., 2017, vol. 90, no. 3, pp. 374–379. https://doi.org/10.1134/S1070427217030089

    Article  CAS  Google Scholar 

  15. Geng, H.X., Mei, A., Dong, C., Lin, Y.H., and Nan, C.W., J. Alloys Compd, 2009, vol. 481, pp. 555–558. https://doi.org/10.1016/j.jallcom.2009.03.038

    Article  CAS  Google Scholar 

  16. Wu, J.-F. and Guo, X., Solid State Ionics, 2017, vol. 310, pp. 38–43. https://doi.org/10.1016/j.ssi.2017.08.003

    Article  CAS  Google Scholar 

  17. Mei, A., Jiang, Q.-H., Lin, Y.-H., and Nan, C.-W., J. Alloys Compd, 2009, vol. 486, pp. 871–875. https://doi.org/10.1016/j.jallcom.2009.07.091

    Article  CAS  Google Scholar 

  18. Gnedenkov, S.V. and Sinebryukhov, S.L., Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, 2006, no. 5, pp. 6–16.

  19. Kawai, H. and Kuwano, J., J. Electrochem. Soc., 1994, vol. 141, no. 7, pp. L78–79. https://doi.org/10.1149/1.2055043

    Article  CAS  Google Scholar 

  20. Geng, H., Lan, J., Mei, A., Lin, Y., and Nan, C.W., Electrochim. Acta, 2011, vol. 56, pp. 3406–3414. https://doi.org/10.1016/j.electacta.2010.06.031

    Article  CAS  Google Scholar 

  21. Lineva, B.A., Kobylyanskaya, S.D., Kovalenko, L.L., V’yunov, O.I., and Belous, A.G., Inorg. Mater., 2017, vol. 53, no. 3, pp. 326–332. https://doi.org/10.1134/S0020168517030074

    Article  CAS  Google Scholar 

  22. Kunshina, G.B., Bocharova, I.V., and Lokshin, E.P., Inorg. Mater., 2015, vol. 51, no. 4, pp. 369–374. https://doi.org/10.1134/S0020168515040068

    Article  CAS  Google Scholar 

  23. Kunshina, G.B., Efremov, V.V., and Lokshin, E.P., Russ. J. Electrochem., 2015, vol. 51, no. 6, pp. 551–555. https://doi.org/10.1134/S1023193515060130

    Article  CAS  Google Scholar 

  24. Ivanov-Shits, A.K. and Murin, I.V., Ionika tverdogo tela (Solid State Ionics), vol. 1, St. Petersburg: Izd. SPb Gos. Univ., 2000, p. 132.

    Google Scholar 

  25. Kotobuki, M. and Koishi, M., Ceram. Int., 2013, vol. 39, pp. 4645–4649. https://doi.org/10.1016/j.ceramint.2012.10.206

    Article  CAS  Google Scholar 

  26. Fortal’nova, E.A., Gavrilenko, O.N., Belous, A.G., and Politova, E.D., Ros. Khim. Zh., 2008, vol. LII, no. 5, pp. 43–51.

    Google Scholar 

  27. Hu, X., Cheng, X., Qin, S., Yan, G., Malzbender, J., Qiang, W., and Huang, B., Ceram. Int., 2018, vol. 44, pp. 1902–1908. https://doi.org/10.1016/j.ceramint.2017.10.129

    Article  CAS  Google Scholar 

  28. Trong, L.D., Thao, T.T., and Dinh, N.N., Solid State Ionics, 2015, vol. 278, pp. 228–232. https://doi.org/10.1016/j.ssi.2015.05.027

    Article  CAS  Google Scholar 

  29. Choi, H.J., Kim, S.Y., Gong, M.K., Vignesh, H., Aravindan, V., Lee, Y.G., and Lee, Y.-S., J. Alloys Compd., 2017, vol. 729, pp. 338–343. https://doi.org/10.1016/j.jallcom.2017.09.160

    Article  CAS  Google Scholar 

  30. Ren, Y., Chen, K., Chen, R., Liu, T., Zhang, Y., and Nan, C.-W., J. Am. Ceram. Soc., 2015, vol. 98, pp. 3603–3623. https://doi.org/10.1111/jace.13844

    Article  CAS  Google Scholar 

  31. Xia, W., Xu, B., Duan, H., Tang, X., Guo, Y., Kang, H., Li, H., and Liu, H., J. Am. Ceram. Soc., 2017, vol. 100, no. 7, pp. 2832–2839. https://doi.org/10.1111/jace.14865

    Article  CAS  Google Scholar 

  32. Zhang, B., Tan, R., Yang, L., Zheng, J., Zhang, K., Mo, S., Lin, Z., and Pan, F., Energy Storage Mater., 2018, vol. 10, pp. 139–159. https://doi.org/10.1016/j.ensm.2017.08.015

    Article  Google Scholar 

Download references

Acknowledgments

The electron-microscopic measurements were made with the equipment of the Collective Use Center at the Institute of Chemistry and Technology of Rare Elements and Mineral Resources, Kola Scientific Center, Russian Academy of Sciences.

Funding

The study was in part financially supported by Program no. 55 of the Presidium of the Russian Academy of Sciences “Arctic: scientific foundations of its exploration, preservation, and development.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Kunshina.

Ethics declarations

The authors state that they have no conflict of interest to be disclosed in the present communication.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Prikladnoi Khimii, 2019, Vol. 92, No. 10, pp. 1254–1262.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunshina, G.B., Shcherbina, O.B. & Ivanenko, V.I. Study of Transport Properties and Microstructure of Lithium-Conducting Li0.33La0.56TiO3 Ceramic. Russ J Appl Chem 92, 1351–1358 (2019). https://doi.org/10.1134/S1070427219100045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427219100045

Keywords

Navigation