Skip to main content
Log in

Magnesium-Bismuth System: Thermodynamic Properties and Prospects for Use in Magnesium-Ion Batteries

  • Reviews
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Along with large-scale studies of promising electrode materials for lithium-ion and sodium-ion batteries, in the past 10–15 years there has been interest in rechargeable batteries with magnesium anode and in magnesium-ion batteries. Bismuth shows promise as a material for the negative electrode of magnesium-ion batteries. The review summarizes the data on the thermodynamic properties of magnesium-bismuth alloys and on possible use of bismuth or bismuth alloys in magnesium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kabanov, B.N., Leikis, D.I., Kiseleva, I.G., Astakhov, I.M., and Aleksandrova, D.P., Dokl. Akad. Nauk SSSR, 1962, vol. 144, no. 5, pp. 1085–1088.

    CAS  Google Scholar 

  2. Kabanov, B.N., Astakhov, I.I. and Kiseleva, I.G., Usp. Khim., 1965, vol. 34, no. 10, pp. 1813–1830.

    Article  CAS  Google Scholar 

  3. Kabanov, B.N., Astakhov, I.I., and Kiseleva, I.G., in Elektrokhimiya i rasplavy (Electrochemistry and Melts), Moscow: Nauka, 1974, pp. 56–60.

    Google Scholar 

  4. Kabanov, B.N., Astakhov, I.I., and Kiseleva, I.G., in Kinetika slozhnykh elektrokhimicheskikh reaktsii (Kinetics of Complex Electrochemical Reactions), Moscow: Nauka, 1981, pp. 200–239.

    Google Scholar 

  5. Winter, M., Besenhard, J.O., Spahr, M.E., and Novak, P., Adv. Mater., 1998, vol. 10, no. 10, pp. 725–763.

    Article  CAS  Google Scholar 

  6. Li, H., Shi, L., Wang, Q., Chen, L., and Huang, X., Solid State Ionics, 2002, vol. 148, pp. 247–258.

    Article  CAS  Google Scholar 

  7. Park, C.-M., Kim, J.-H., Kim, H., and Sohn, H.-J., Chem. Soc. Rev., 2010, vol. 39, pp. 3115–3141.

    Article  CAS  PubMed  Google Scholar 

  8. Song, M.-K., Park, S., Alamgir, F.M., Cho, J., and Liu, M., Mater. Sci. Eng. R, 2011, vol. 72, pp. 203–252.

    Article  CAS  Google Scholar 

  9. Zhang, W.-J., J. Power Sources, 2011, vol. 196, pp. 13–24.

    Article  CAS  Google Scholar 

  10. Kim, H., Jeong, G., Kim, Y.-U., Kim, J.-H., Park, C.-M., and Sohn, H.-J., Chem. Soc. Rev., 2013, vol. 42, pp. 9011–9034.

    Article  CAS  PubMed  Google Scholar 

  11. Morachevskii, A.G. and Demidov, A.I., Russ. J. Appl. Chem., 2015, vol. 88, no. 4, pp. 547–566.

  12. Morachevskii, A.G., Russ. J. Appl. Chem., 2015, vol. 88, no. 7, pp. 1087–1103.

    Article  CAS  Google Scholar 

  13. Morachevskii, A.G., Russ. J. Appl. Chem., 2015, vol. 88, no. 11, pp. 1637–1649.

    Article  CAS  Google Scholar 

  14. Nitta, N., Wu, F., Lee, J.T., and Yushin, G., Mater Today, 2015, vol. 18, no. 5, June, pp. 252–264.

    Article  CAS  Google Scholar 

  15. Morachevskii, A.G., Russ. J. Appl. Chem., 2016, vol. 89, no. 10, pp. 1561–1572.

    Article  CAS  Google Scholar 

  16. Schipper, F. and Aurbach, D., Russ. J. Electrochem., 2016, vol. 52, no. 12, pp. 1095–1121

    Article  CAS  Google Scholar 

  17. Morachevskii, A.G. and Demidov, A.I., Termodinamika splavov litiya s elementami podgruppy ugleroda (C, Si, Ge, Sn, Pb) (Thermodynamics of Lithium Alloys with Carbon Subgroup Elements (C, Si, Ge, Sn, Pb)), St. Petersburg: Politekh. Univ., 2016.

    Google Scholar 

  18. Morachevskii, A.G. and Demidov, A.I., Termodinamika i elektrokhimiya splavov sur’ my so shchelochnymi metallami (Thermodynamics and Electrochemistry of Antimony Alloys with Alkali Metals), St. Petersburg: Politekh, 2018.

    Google Scholar 

  19. Doeff, M.M., Ma, Y., Visco, S., and De Jonghe, L.C., J. Electrochem. Soc., 1993, vol. 140, pp. L169–L170.

    Article  CAS  Google Scholar 

  20. Dahbi, M., Yabuuchi, N., Kubota, K., Tokiwa, K., and Komaba, S., Phys. Chem. Chem. Phys., 2014, vol. 16, pp. 15007–15028.

    Article  CAS  PubMed  Google Scholar 

  21. Yabuuchi, N., Kubota, K., Dahbi, M., and Komaba, S., Chem. Rev., 2014, vol. 114, pp. 11636–11682.

    Article  CAS  PubMed  Google Scholar 

  22. Kubota, K. and Komaba, S., J. Electrochem. Soc., 2015, vol. 162, pp. A2538–A2550.

    Article  CAS  Google Scholar 

  23. Bommier, C. and Ji, X., Israel J. Chem., 2015, vol. 55, pp. 486–507.

    Article  CAS  Google Scholar 

  24. Yang, S.-B., Dong, W., Shen, D., Li, S., Wang, Z.-J., Zhang, J.-M., Sun, W., and Zhang, Q., Chin. J. Nonferrous Met., 2016, no. 5, pp. 1054–1064.

  25. Kim, H., Kim, J.C., Ding, Z., Lee, M.H., Lim, K., Yoon, G., and Kang, K., Adv. Energy Mater., 2016, vol. 6, article 1600943.

    Article  CAS  Google Scholar 

  26. Kulova, T.L. and Skundin, A.M., Elektrokhim. Energet., 2016, no. 3, pp. 122–150.

  27. Hwang, J.-Y., Myung, S.-T., and Sun, Y.-K., Chem. Soc. Rev., 2017, vol. 46, pp. 3529–3614.

    Article  CAS  PubMed  Google Scholar 

  28. Roberts, S. and Kendrick, E., Nanotechnol., Sci. Appl., 2018, vol. 11, pp. 23–33.

    Article  CAS  Google Scholar 

  29. Li, L., Zheng, Y., Zhang, S., Yang, J., Shao, Z., and Guo, Z., Energy Environ. Sci., 2018, vol. 11, pp. 2310–2340.

    Article  CAS  Google Scholar 

  30. Skundin, A.M., Kulova, T.L., and Yaroslavtsev, A.B., Russ. J. Electrochem., vol. 54, no. 2, pp. 113–152.

  31. Morachevskii, A.G., Russ. J. Appl. Chem., 2018, vol. 91, no. 11, pp. 1783–1796.

    Article  Google Scholar 

  32. Morachevskii, A.G., Russ. J. Appl. Chem., 2019, vol. 92, no. 3, pp. 321–331.

    Article  CAS  Google Scholar 

  33. Pu, X., Wang, H., Zhao, D., Yang, H., Al, X., Cao, S., Chen, Z., and Cao, Y., Small, 2019, article 1805427.

    Article  CAS  Google Scholar 

  34. Wang, C.C., Wang, L.B., Li, F.J., Cheng, F.Y., and Chen, J., Adv. Mater, 2017, vol. 29, article 1702212.

  35. Nayeb-Hashemi, A.A. and Clark, J.B., Bull. Alloy Phase Diagr, 1985, vol. 6, no. 6, pp. 528–532.

    Article  CAS  Google Scholar 

  36. Oh, C.-S., Kang, S.-Y., and Lee, D.N., CALPHAD, 1992, vol. 16, no. 2, pp. 181–191.

    Article  CAS  Google Scholar 

  37. Okamoto, H., J. Phase Equil., 1992, vol. 13, no. 6, pp. 672–673.

    Article  Google Scholar 

  38. Paliwal, M. and Jung, I.-H., CALPHAD, 2009, vol. 33, no. 4, pp. 744–754.

    Article  CAS  Google Scholar 

  39. Egan, J.J., J. Nucl. Mater., 1974, vol. 51, pp. 30–35.

    Article  CAS  Google Scholar 

  40. Hultgren, R., Desai, P.D., Hawkins, D.T., Gleiser, M., and Kelly, K.K., Selected Values of the Thermodynamic Properties of Binary Alloys, Ohio: Am. Soc. for Metals, 1973.

    Google Scholar 

  41. Hillert, M., Jansson, B., Sundman, B., and Agren, J., Met. Trans. A, 1985, vol. 16A, pp. 261–266.

    Article  CAS  Google Scholar 

  42. Egan, J.J., Acta Metall., 1959, vol. 7, August, pp. 560–564.

  43. Mozer, Z. and Krohn, C., Met. Trans., 1974, vol. 5, May, pp. 979–985.

  44. Prasad, R., Venugopal, V., Iyer, P.N., and Sood, D.D., J. Chem. Thermodyn, 1978, vol. 10, pp. 135–141.

    Article  CAS  Google Scholar 

  45. Yuan-hsi, C., Acta Metall. Sin., 1964, vol. 7, no. 2, April, pp. 217–219.

    Google Scholar 

  46. Robie, A. and Hemingway, B.S., Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10 5pascals) pressure and at higher temperatures, US Geological Survey Bull., Washington: United States Government, 1995, no. 2131.

    Google Scholar 

  47. Morachevskii, A.G., Fiziko-khimiya retsiklinga svintsa (Physical Chemistry of Lead Recycling), St. Petersburg: Politekh. Univ., 2009.

    Google Scholar 

  48. Vetter, F. and Kubaschewski, O., Z. Elektrochem, 1953, vol. 57, no. 4, pp. 243–248.

    CAS  Google Scholar 

  49. Morachevskii, A.G., Voronin, G.F., Geiderikh, V.A., and Kutsenok, I.B., Elektrokhimicheskie metody issledovaniya v termodinamike splavov (Electrochemical Methods of Investigation in Alloy Thermodynamics), Moscow: Akademkniga, 2003.

    Google Scholar 

  50. Eckert, C.A., Smith, J.S., Irvin, R.B., and Cox, K.R., AIChE J., 1982, vol. 28, no. 2, pp. 325–333.

    Article  CAS  Google Scholar 

  51. Alger, M.M. and Eckert, C.A., Ind. Eng. Chem. Fundam., 1983, vol. 22, no. 2, pp. 249–254.

    Article  CAS  Google Scholar 

  52. Eckert, C.A., Irvin, R.B., and Smith, J.S., Met. Trans. B, 1983, vol. 14, September, pp. 451–458.

    Article  Google Scholar 

  53. Alger, M.M. and Eckert, C.A., High Temp. Sci., 1985, vol. 19, pp. 253–266.

    CAS  Google Scholar 

  54. Alger, M.M. and Eckert, C.A., Ind. Eng. Chem. Fundam., 1986, vol. 25, no. 3, pp. 416–421.

    Article  CAS  Google Scholar 

  55. Turkdogan, E.T., Physical Chemistry of High Temperature Technology, New York: Academic, 1980.

    Google Scholar 

  56. Morachevskii, A.G. and Firsova, E.G., Termodinamika zhidkhikh metallov i splavov (Thermodynamics of Liquid Metals and Alloys), St. Petersburg: Lan’, 2016.

    Google Scholar 

  57. Frenkel’, Ya.I., Kineticheskaya teoriya zhidkostei (Kinetic Theory of Liquids), Moscow: Akad. Nauk SSSR, 1945.

    Google Scholar 

  58. Morachevskii, A.G. and Kozin, L.F., Termodinamika i materialovedenie poluprovodnikov (kollektivnaya monografiya) (Thermodynamics and Materials Science of Semiconductors (Collective Monograph)), Glazov, V.M., Ed., Moscow: Metallurgiya, 1992, pp. 53–74.

  59. Cutler, M., Liquid Semiconductors, New York: Academic, 1977.

    Google Scholar 

  60. Guo, C., Barnes, A.C., and Howells, W.S., J. Phys.: Condens. Matter, 1996, vol. 8, pp. 10823–10837.

    CAS  Google Scholar 

  61. Prigogine, I. and Defay, R., Chemical Thermodynamics, London: Longmans Green, 1954.

    Google Scholar 

  62. Wasai, K. and Mukai, K., J. Jpn. Inst. Met., 1981, vol. 45, no. 6, pp. 593–602; 1982, vol. 46, no. 3, pp. 266–274.

    Article  CAS  Google Scholar 

  63. Mokrievich, A.G., Morachevskii, A.G., and Maiorova, E.A., Zh. Prikl. Khim., 1990, vol. 63, no. 5, pp. 981–985.

    CAS  Google Scholar 

  64. Morachevskii, A.G., Mokrievich, A.G., and Maiorova, E.A., Zh. Prikl. Khim., 1993, vol. 66, no. 7, pp. 1441–1447.

    CAS  Google Scholar 

  65. Morachevskii, A.G., Sladkov, I.B., and Firsova, E.G., Termodinamicheskie raschety v khimii i metallurgii (Thermodynamic Calculations in Chemistry and Metallurgy), St. Petersburg: Lan’, 2018.

    Google Scholar 

  66. Morachevskii, A.G. and Firsova, E.G., Russ. Metall. (Metally), 2017, no. 2, pp. 111–115.

    Article  Google Scholar 

  67. Lu, Z., Schechter, A., Moshkovich, M., and Aurbach, D., J. Electroanal. Chem., 1999, vol. 466, pp. 203–217.

    Article  CAS  Google Scholar 

  68. Novak, P., Imhof, R., and Haas, O., Electrochim. Acta, 1999, vol. 45, pp. 351–367.

    Article  CAS  Google Scholar 

  69. Aurbach, D., Lu, Z., Schechter, A., Gofer, Y., Gizbar, H., Turgeman, R., Cohen, Y., Moshkovich, M., and Levi, E., Nature, 2000, vol. 407, pp. 724–727.

    Article  CAS  PubMed  Google Scholar 

  70. Aurbach, D., Weissman, I., Gofer, Y., and Levi, E., Chem. Record, 2003, vol. 3, pp. 61–73.

    Article  CAS  Google Scholar 

  71. Chusid, O., Gofer, Y., Gizbar, H., Vestfrid, Y., Levi, E., Aurbach, D., and Riech, I., Adv. Mater., 2003, vol. 15, pp. 627–630.

    Article  CAS  Google Scholar 

  72. Aurbach, D., Suresh, G.S., Levi, E., Mitelman, A., Mizrachi, O., Chusid, O., and Brunelli, M., Adv. Mater., 2007, vol. 19, pp. 4260–4267.

    Article  CAS  Google Scholar 

  73. Arthur, T.S., Singh, N., and Matsui, M., Electrochem. Commun., 2012, vol. 16, pp. 103–106.

    Article  CAS  Google Scholar 

  74. Yoo, H.D., Shterenberg, I., Gofer, Y., Gershinsky, G., Pour, N., and Aurbach, D., Energy Environ. Sci., 2013, vol. 6, pp. 2265–2279.

    Article  CAS  Google Scholar 

  75. Shao, Y., Gu, M., Li, X., Nie, Z., Zuo, P., Li, G., Liu, T., Xiao, J., Cheng, Y., Wang, C., Zhang, J.-G., and Liu, J., Nano Lett., 2014, vol. 14, pp. 255–260.

    Article  CAS  PubMed  Google Scholar 

  76. Saha, P., Datta, M.K., Velikokhatnyi, O.I., Manivannan, A., Alman, D., and Kumta, P.N., Prog. Mater. Sci., 2014, vol. 66, pp. 1–86.

    Article  CAS  Google Scholar 

  77. Murgia, F., Stievano, L., Monconduit, L., and Berthelot, R., J. Mater. Chem. A, 2015, vol. 3, pp. 16478–16485.

    Article  CAS  Google Scholar 

  78. Benmayza, A., Ramanathan, M., Singh, N., Mizuno, F., and Prakash, J., J. Electrochem. Soc., 2015, vol. 162, pp. A1630–A1635.

    Article  CAS  Google Scholar 

  79. Jin, W., Li, Z., Wang, Z., and Fu, Y.Q., Mater. Chem. Phys., 2016, vol. 182, pp. 167–172.

    Article  CAS  Google Scholar 

  80. Ramanathan, M., Benmauza, A., Prakach, J., Singh, N., and Mizuno, F., J. Electrochem. Soc., 2016, vol. 163, no. 3, pp. A477–A487.

    Article  CAS  Google Scholar 

  81. Liu, Z., Lee, J., Xiang, G., Glass, H.F.J., Keyzer, E.N., Dutton, S.E., and Grey, C.P., Chem. Commun., 2017, vol. 53, pp. 743–746.

    Article  CAS  Google Scholar 

  82. Lee, J., Monserrat, B., Seymour, I.D., Liu, Z., Dutton, S.E., and Grey, C.P., J. Mater. Chem. A, 2018, vol. 6, pp. 16983–16991.

    Article  CAS  Google Scholar 

  83. Jung, S.C. and Han, Y.K., J. Phys. Chem. C, 2018, vol. 122, no. 31, pp. 17643–17649.

    Article  CAS  Google Scholar 

  84. Zhao-Karger, Z., Bardaji, M.E.G., Fuhr, O., and Fichtner, M., J. Mater. Chem. A, 2017, vol. 5, pp. 10815–10820.

    Article  CAS  Google Scholar 

  85. Tan, Y.-H., Yao, W.-T., Zhang, T., Ma, T., Lu, L.-L., Zhou, F., Yao, H.-B., and Yu, S.H., ACS Nano, 2018, vol. 12, no. 6, pp. 5856–5865.

    Article  CAS  PubMed  Google Scholar 

  86. Lu, D., Liu, H., Huang, T., Xu, Z., Ma, L., Yang, P., Qiang, P., Zhang, F., and Wu, D., J. Mater. Chem. A, 2018, vol. 6, pp. 17297–17302.

    Article  CAS  Google Scholar 

  87. Matsui, M., Kuwata, H., Mori, D., Imanishi, N., and Mizuhata, M., Front. Chem., 2019, vol. 7, January, article 7.

  88. Kuang, C., Zeng, W., and Li, Y., J. Nanosci. Nanotechnol., 2019, vol. 19, no. 1, pp. 12–25.

    Article  CAS  PubMed  Google Scholar 

  89. Cheng, Y., Chang, H. J., Dong, H., Choi, D., Sprenkle, V.L., Liu, J., Yao, Y., and Li, G., J. Mater. Res., 2016, vol. 31, no. 20, pp. 3125–3141.

    Article  CAS  Google Scholar 

  90. Dong, H., Li, Y., Liang, Y., Li, G., Sun, C.-J., Ren, Y., Lu, Y., and Yao, Y., Chem. Commun., 2016, vol. 52, pp. 8263–8266.

    Article  CAS  Google Scholar 

  91. Li, Y., An, Q., Cheng, Y., Liang, Y., Ren, Y., Sun, C.-J., Dong, H., Tang, Z., Li, G., and Yao, Y., Nano Energy, 2017, vol. 34, pp. 188–194.

    Article  CAS  Google Scholar 

  92. Kim, D.-M., Jung, S.C., Ha, S., Kim, Y., Park, Y., Ryu, J.H., Han, Y.-K., and Lee, K.T., Chem. Mater., 2018, vol. 30, pp. 3199–3203.

    Article  CAS  Google Scholar 

  93. Das, S.K., Mahapatra, S., and Lahan, H., J. Mater. Chem. A, 2017, vol. 5, pp. 6347–6367.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Morachevskii.

Ethics declarations

A.G. Morachevskii is a member of the Editorial Board of Zhurnal Prikladnoi Khimii/Russian Journal of Applied Chemistry.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Prikladnoi Khimii, 2019, Vol. 92, No. 10, pp. 1227–1237.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morachevskii, A.G. Magnesium-Bismuth System: Thermodynamic Properties and Prospects for Use in Magnesium-Ion Batteries. Russ J Appl Chem 92, 1325–1335 (2019). https://doi.org/10.1134/S107042721910001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042721910001X

Keywords

Navigation