Skip to main content
Log in

The Role of Gold Nanoparticles on Different Supports for the In-Air Conversion of Levulinic Acid into γ-Valerolactone with Formic Acid as an Alternative Hydrogen Source

  • Organic Synthesis and Industrial Organic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

In this report, catalysts of Au nanoparticles on different supports (Au/ZrO2, Au/C, Au/Al2O3, Au/SiO2, Au/TiO2, Au/MgO) were fabricated by co-precipitation and impregnation methods to determine the role of Au over oxides. The crystal structure and phase composition of catalyst samples before and after test reactions were investigated by X-ray diffraction technique, X-ray photoelectron spectroscopy and transmission electron microscopy. The catalytic activity was tested on the hydrogenation reaction of levulinic acid (LA) into γ-valerolactone (GVL) using formic acid (FA) as a hydrogen source. In all tested samples, Au/ZrO2-D (was fabricated by co-precipitation method) gave the best GVL yield of 85.0% with very low amount of catalyst loading (catalyst/reactant 1 wt). The existent of Au3+ in the catalyst system may be the main factor to improve the yield of GVL formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Escobar, J.C., Lora, E.S., Venturini, O.J., et al., Renew. Sustain. Energy Rev., 2009, vol. 13, pp. 1275-1287; Hu, L., Zhao, G., Hao, W., et al., RSC Adv., 2012, vol. 2, pp. 11184-11206; Corma, A., Iborra, S., and Velty, A., Chem. Rev., 2007, vol. 107, pp. 2411–2502.

  2. Alonso, D.M., Bond, J.Q., and Dumesic, J.A., Green Chem., 2010, vol. 12, pp. 1493–1513. Huber, G.W., Iborra, S., and Corma. A., Chem. Rev., 2006, vol. 106, pp. 4044–4098; Takagaki, A., Nishimura, S., and Ebitani, K., Catal. Surv. Asia, 2012, vol. 16, pp. 164–182.

    Article  CAS  Google Scholar 

  3. Nigam, P.S. and Singh, A., Combust. Sci., 2011, vol. 37, pp. 52–68; Gallezot, P., Chem. Soc. Rev., 2012, vol. 41, pp. 1538–1558.

    Article  CAS  Google Scholar 

  4. Huber, G.W. and Corma, A., Chem. Rev., 2006, vol. 106, pp. 4044–4098.

    Article  CAS  Google Scholar 

  5. Kamm, B., Angew. Chem. Int. Ed., 2007, vol. 46, pp. 5056–5058.

    Article  CAS  Google Scholar 

  6. Coombs, J. and Hall, K., Renew. Energy, 2007, vol. 15, pp. 54–59.

    Article  Google Scholar 

  7. Horvath, I.T., Mehdi, H., Fabos, V., Boda, L., and Mika, L.T., Green Chem., 2008, vol. 10, pp. 238–242.

    Article  CAS  Google Scholar 

  8. Savage, N., Nature, 2011, vol. 474, S9–S11.

    Article  CAS  Google Scholar 

  9. Bond, J.Q., Alonso, D.M., Wang, D., West, R.M., and Dumesic, J.A., Science, 2010, vol. 327, pp. 1110–1111; Bond, J.Q., Alonso, D.M., West, R.M., and Dumesic, J.A., Langmuir, 2010, vol. 26, pp. 16291–16298.

    Article  CAS  Google Scholar 

  10. Deng, J., Wang, Y., Pan, T., Xu, Q., et al., Chem. Sus. Chem., 2013, vol. 6, pp. 1163–1167.

    Article  CAS  Google Scholar 

  11. Dunlop, A.P. and Madden, J.W., US patent 2786852, 1957.

    Google Scholar 

  12. Alonso, D.M., Wettstein, S.G., and Dumesic, J.A., Green Chem., 2013, vol. 15, pp. 584–595.

    Article  CAS  Google Scholar 

  13. Wettstein, S.G., Alonso, D. M., Chong, Y., and Dumesic, J.A., Energy Environ. Sci., 2012, vol. 5, pp. 8199–8203.

    Article  CAS  Google Scholar 

  14. Yan, K., Liao, J., Wu, X., and Xie, X., RSC Adv., 2013, vol. 3, pp. 3853–3856.

    Article  CAS  Google Scholar 

  15. Sen, S.M., Alonso, D.M., Wettstein, S.G., et al., Energy Environ. Sci., 2012, vol. 5, pp. 9690–9697.

    Article  CAS  Google Scholar 

  16. Zhang, J., Wu, S.B., Li, B., and Zhang, H.D., Chem. Cat. Chem., 2012, vol. 4, pp. 1230–1237.

    CAS  Google Scholar 

  17. Manzer, L.E., Appl. Catal., A, 2004, vol. 272, pp. 249–256; Al-Shaal, M.G., William, W.R.H., and Palkovits, R., Green Chem., 2012, vol. 14, pp. 1260–1263.

    Article  CAS  Google Scholar 

  18. Yan, Z., Lin, L., and Liu, S., Energy Fuels, 2009, vol. 23, pp. 3853–3858.

    Article  CAS  Google Scholar 

  19. Upare, P.P., Lee, J.M., Hwang, D.W., Halligudi, S.B., et al., J. Ind. Eng. Chem., 2011, vol. 17, pp. 287–292.

    Article  CAS  Google Scholar 

  20. Lv, J., Rong, Z., Wang, Y., et al., RSC Adv., 2015, vol. 5, pp. 72037–2045.

    Article  CAS  Google Scholar 

  21. Li, W., Xie, J.H., Lin, H., and Zhou, Q.L., Green Chem., 2012, vol. 14, pp. 2388–2390.

    Article  CAS  Google Scholar 

  22. Wright, W.R.H. and Palkovits, R., Chem. Sus. Chem., 2012, vol. 5, pp. 1657–1667.

    Article  CAS  Google Scholar 

  23. Wang, J., Jaenicke, S., and Chuah, G.-K., RSC Adv., 2014, vol. 4, pp. 13481–13489; Kuwahara, Y., Kaburagi, W., Osada, Y., Fujitani, T., and Yamashita, H., Catal. Today, 2017, vol. 281, pp. 418–428.

    Article  CAS  Google Scholar 

  24. He, J., Li, H., Lu, Y.-M., et al., Appl. Catal. A: Gen., 2016, vol. 510, pp. 11-19; Li, H., Fang, Z., and Yang, S., ACS Sustain. Chem. Eng., 2016, vol. 4, pp. 236–246.

  25. Li, H., Fang, Z., and Yang, S., Chem. Plus. Chem., 2016, vol. 81, pp. 135–142.

    CAS  Google Scholar 

  26. Du, X.-L., He, L., Liu, Y.-M., et al., Angew. Chem. Int. Ed., 2011, vol. 50, pp. 7815–7819.

    Article  CAS  Google Scholar 

  27. Pham, S.A., Shun, N., and Kohki, E., RSC Adv., 2014, vol. 4, pp. 10525–10530.

    Article  Google Scholar 

Download references

Acknowledgments

This research is funded by the Vietnam National University, Hanoi (VNU) under project number QG.15.16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pham Anh Son.

Additional information

Conflict of Interest

The authors state that they have no conflict of interest to be disclosed in the present communication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, P.A., Hoang, D.H. & Canh, K.T. The Role of Gold Nanoparticles on Different Supports for the In-Air Conversion of Levulinic Acid into γ-Valerolactone with Formic Acid as an Alternative Hydrogen Source. Russ J Appl Chem 92, 1316–1323 (2019). https://doi.org/10.1134/S1070427219090179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427219090179

Keywords

Navigation