Skip to main content
Log in

Hydro-Oxygenation of Furfural in the Presence of Ruthenium Catalysts Based on Al-HMS Mesoporous Support

  • Organic Synthesis and Industrial Organic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Ruthenium-containing catalyst based on an Al-HMS mesoporous aluminosilicate was synthesized, The mesoporous support and the catalyst on its basis were characterized by the methods of low-temperature desorption/adsorption of nitrogen, temperature-programmed desorption of ammonia, transmission electron microscopy, X-ray photoelectron microscopy, and energy-dispersive X-ray fluorescence analysis. The catalyst obtained was examined in the reaction of hydrodeoxygenation of the model compound of bio-oil, furfural, in the presence of water. The reaction was performed at initial hydrogen pressures of 1–7 MPa in the temperature range 200–300°C. It was shown that the catalyst under study exhibits a high activity in the hydrotransformation of furfural: the conversion was 100% in 1 h at a hydrogen pressure of 5 MPa and temperature of 200°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Talmadge, M.S., Baldwin, R.M., Biddy, M.J., McCormick, R.L., Beckham, G.T., Ferguson, G.A., Czernik, S., Magrini-Bair, K.A., Foust, T.D., Metelsk, P.D., Hetrickd, C., and Nimlos, M.R., Green Chem., 2014, vol. 16, pp. 407–453. https://doi.org/10.1039/C3GC41951G

    Article  CAS  Google Scholar 

  2. Mullen, Ch.A. and Boateng, A.A., Fuel, 2019, vol. 245, pp. 360–367. https://doi.org/10.1016/j.fuel.2019.02.027

    Article  CAS  Google Scholar 

  3. Shen, D., Jin, W., Hu, J., Xiao, R., and Luo, K., Renew. Sust. Energ. Rev., 2015, vol. 51, pp. 761–774. https://doi.org/10.1016/j.rser.2015.06.054

    Article  CAS  Google Scholar 

  4. Sundqvist, T., Oasmaa, A., and Koskinen, A., Energy Fuels, 2015, vol. 29, pp. 2527–2534. https://doi.org/10.1021/acs.energyfuels.5b00238

    Article  CAS  Google Scholar 

  5. Santillan-Jimenez, E., Pace, R., Morgan, T., Behnke, C., Sajkowski, D.J., Lappas, A., and Crocker, M., Fuel Process. Technol., 2019, vol. 188, pp. 164–171. https://doi.org/10.1016/j.fuproc.2019.02.018

    Article  CAS  Google Scholar 

  6. Lee, I.G., Lee, H., Kang, B.S., Kim, Y.M., Kim, S.C., Jung, S.C., Ko, C.H., and Park, Y.K., J. Nanosci. Nanotechnol., 2018, vol. 18, no. 2, pp. 1331–1335. https://doi.org/10.1166/jnn.2018.14907

    Article  CAS  PubMed  Google Scholar 

  7. Diebold, J.P. and Czernik, S., Energy Fuels, 1997, vol. 115, pp. 1081–1091. https://doi.org/10.1021/ef9700339

    Article  Google Scholar 

  8. Galadima, A. and Muraza, O., Energy Convers. Manag., 2015, vol. 105, no. 15, pp. 338–354. https://doi.org/10.1016/j.enconman.2015.07.078

    Article  CAS  Google Scholar 

  9. Zhang, Y., Brown, T.R., Hu, G., and Brown, R.C., Chem. Eng. J., 2013, vol. 225, pp. 895–904. https://doi.org/10.1016/j.cej.2013.01.030

    Article  CAS  Google Scholar 

  10. Ardiyanti, A.R., Gutierrez, A., Honkela, M.L., Krause, A., and Heeres, H.J., Appl. Catal., A, 2011, vol. 407, pp. 56–66. https://doi.org/10.1016/j.apcata.2011.08.024

    Article  CAS  Google Scholar 

  11. Lin, Y.-C., Li, C.-L., Wan, H.-P., Lee, H.-T., and Liu, C.-F., Energy Fuels, 2011, vol. 25, pp. 890–896. https://doi.org/10.1021/ef101521z

    Article  CAS  Google Scholar 

  12. Banerjee, A. and Mushrif, S.H., J. Phys. Chem. C, 2018, vol. 122, no. 32, pp. 18383–18394. https://doi.org/10.1021/acs.jpcc.8b01301

    Article  CAS  Google Scholar 

  13. Sitthisa, S. and Resasco, D.E., Catal. Lett., 2011, vol. 141, no. 6, pp. 784–791. https://doi.org/10.1007/s10562-011- 0581-7

    Article  CAS  Google Scholar 

  14. Lee, W.-Sh., Wang, Zh., Zheng, W., Vlachos, D.G., and Bhan, A., Catal. Sci. Technol., 2014, vol. 4, pp. 2340–2352. https://doi.org/10.1039/C4CY00286E

    Article  CAS  Google Scholar 

  15. Lin, Zh., Chen, R., Qu, Zh., and Chen, J.G., Green Chem., 2018, vol. 20, pp. 2679–2696. https://doi.org/10.1039/C8GC00239H

    Article  CAS  Google Scholar 

  16. Olcese, R.N., Bettahar, M., Petitjean, D., Malaman, B., Giovanella, F., and Dufour, A., Appl. Catal., B, 2012, vol. 115–116, pp. 63–73. https://doi.org/10.1016/j.apcatb.2011.12.005

    Article  CAS  Google Scholar 

  17. Faba, L., Díaz, E., and Ordóñez, S., Appl. Catal., B, 2014, vol. 160–161, pp. 436–444. https://doi.org/10.1016/j.apcatb.2014.05.053

    Article  CAS  Google Scholar 

  18. Wang, C., Luo, J., Liao, V., Lee, J.., Onn, T.M., Murray, Ch.B., and Gorte, R.J., Catal. Today, 2018, vol. 302, pp. 73–79.https://doi.org/10.1016/j.cattod.2017.06.042

    Article  CAS  Google Scholar 

  19. Wang, W., Zhang, Ch., Chen, G., and Zhang, R., Appl. Sci., 2019, vol. 9, no. 6, pp. 1257. https://doi.org/10.3390/app9061257

    Article  CAS  Google Scholar 

  20. Jiang, Zh., Wan, W., Lin, Zh., Xie, J., and Chen, J.G., ACS Catal., 2017, vol. 79, pp. 5758–5765. https://doi.org/10.1021/acscatal.7b01682.

    Article  CAS  Google Scholar 

  21. Yao, G., Wu, G., Dai, W., Guan, N., and Li, L., Fuel, 2015, vol. 150, pp. 175–183. https://doi.org/10.1016/j.fuel.2015.02.035

    Article  CAS  Google Scholar 

  22. Mortensen, P.M., Grunwaldt, J.-D., Jensen, P.A., Knudsen, K.G., and Jensen, A.D., Appl. Catal., A, 2011, vol. 407, nos. 1–2, pp. 1–19. https://doi.org/10.1016/j.apcata.2011.08.046

    Article  CAS  Google Scholar 

  23. Zhang, W., Chen, J., Liu, R., Wang, Sh., Chen, L., and Li, K., ACS Sustainable Chem. Eng., 2014, vol. 24, pp. 683–691. https://doi.org/10.1021/sc400401n

    Article  CAS  Google Scholar 

  24. He, Zh. and Wang, X., Catal. Sustainable Energy, 2012, vol. 1, pp. 28–52. https://doi.org/110.2478/cse-2012-0004

    Google Scholar 

  25. Luo, J., Monai, M., Yun, H., Arroyo-Ramírez, L., Wang, C., Murray, Ch.B., Fornasiero, P., Gorte, R.J., Catal. Lett., 2016, vol. 146, no. 4, pp. 711–717. https://doi.org/10.1007/s10562-016-1705-x

    Article  CAS  Google Scholar 

  26. Ghampson, T.I., Sepúlveda, C., Garcia, R., García Fierro, J.L., Escalona, N., DeSisto, W.J., Appl. Catal., A, 2012, vol. 435–436, pp. 51–60. https://doi.org/10.1016/j.apcata.2012.05.039

    Article  CAS  Google Scholar 

  27. Wang, Y.X., Wu, J.H., and Wang, S.N., RSC Adv., 2013, vol. 3, pp. 12635–12640. https://doi.org/10.1039/C3RA41405A

    Article  CAS  Google Scholar 

  28. Phan, T.N., Park, Y.-K., Lee, I.-G., and Ko, C.H., Appl. Catal., A, 2017, vol. 544, pp. 84–93. https://doi.org/10.1016/j.apcata.2017.06.029

    Article  CAS  Google Scholar 

  29. An, K., Musselwhite, N., Kennedy, G., Pushkarev, V.V., Baker, L.R., and Somorjai, G.A., J. Colloid Interface Sci., 2013, vol. 392, pp. 122–128. https://doi.org/10.1016/j.jcis.2012.10.029

    Article  CAS  PubMed  Google Scholar 

  30. Roldugina, E.A., Naranov, E.R., Maximov, A.L., and Karakhanov, E.A., Appl. Catal., A, 2018, vol. 553C, pp. 24–35. https://doi.org/10.1016/j.apcata.2018.01.008

    Google Scholar 

  31. Morgan, D.J., Surf. Interface Anal., 2015, vol. 47, no. 11, pp. 1072–1079. https://doi.org/10.1002/sia.5852

    Article  CAS  Google Scholar 

  32. Scirè, S., Minicò, S., and Crisafulli, C., Appl. Catal., A, 2002, vol. 235, no. 1–2, pp. 21–31. https://doi.org/10.1016/S0926-860X(02)00237-5

    Article  Google Scholar 

  33. Fuente-Hernández, A., Lee, R., Béland, N., Zamboni, I., and Lavoie, J.-M., Energies, 2017, vol. 10, no. 3, pp. 286. https://doi.org/10.3390/en10030286

    Article  CAS  Google Scholar 

  34. Mariscal, R., Maireles-Torres, P., Ojeda, M., Sádaba, I., and López Granados, M., Energy Environ. Sci., 2016, vol. 9, pp. 1144–1189. https://doi.org/10.1039/C5EE02666K

    Article  CAS  Google Scholar 

  35. Li, H.-L., Wang, S.-Y., Wang, W.-J., Ren, J.-L., Peng, F., Sun, R.-C., and Liang, L., Bioresources, 2013, vol. 8, no. 3._pp. 3200–3211. https://doi.org/10.15376/biores.8.3.3200-3211

    Google Scholar 

  36. Yu, W., Tang, Y., Mo, L., Chen, P., Lou, H., and Zheng, X., Bioresour. Technol., 2011, vol. 102, pp. 8241–8246. https://doi.org/10.1016/j.biortech.2011.06.015

    Article  CAS  PubMed  Google Scholar 

  37. Yang, J., Li, N., Li, Sh., Wang, W., Li, L., Wang, A., Wang, X., Cong, Y., and Zhang, T., Green Chem., 2014, vol. 16, pp. 4879–4884. https://doi.org/10.1039/c4gc01314j

    Article  CAS  Google Scholar 

  38. Fu, Z., Wang, Z., Lin, W., and Song, W., Energy Sources, Part A, 2017, vol. 39, no. 11, pp. 1176–1181. https://doi.org/10.1080/15567036.2017.1310959

    Article  CAS  Google Scholar 

  39. Liu, L.-J., Guo, H.-M., Xue, B., Lou, H., and Chen, M., RSC Adv., 2015, vol. 5, no. 82, pp. 66704–66710. https://doi.org/10.1039/C5RA14284A

    Article  CAS  Google Scholar 

  40. Li, C., Xu, G., Liu, X., Zhang, Y., and Fu, Y., Ind. Eng. Chem. Res., 2017, vol. 56, no. 31, pp. 8843–8849. https://doi.org/10.1021/acs.iecr.7b02046

    Article  CAS  Google Scholar 

  41. Shi, D., Yang, Q., Peterson, C., Lamic-Humblot, A.-F., Girardon, J.-S., Griboval-Constant, A., Stievano, L., Sougrati, M.T., Briois, V., Bagot, P.A.J., Wojcieszak, R., Paul, S., Marceau, E., Catal. Today, 2019, vol. 334, pp. 162–172. https://doi.org/10.1016/j.cattod.2018.11.041

    Article  CAS  Google Scholar 

  42. Fang, R.Q., Liu, H.L., Luque, R., and Li, Y.W., Green Chem., 2015, vol. 17, pp. 4183–4188. https://doi.org/10.1039/C5GC01462J

    Article  CAS  Google Scholar 

  43. Nakagawa, Y. and Tomishige, K., Catal. Today, 2012, vol. 195, pp. 136–143. https://doi.org/10.1016/j.cattod.2012.04.048

    Article  CAS  Google Scholar 

  44. Hronec, M. and Fulajtarova, K., Catal. Commun., 2012, vol. 24, pp. 100–104. https://doi.org/10.1016/j.catcom.2012.03.020

    Article  CAS  Google Scholar 

  45. Shen, T., Hu, R., Zhu, C., Li, M., Zhuang, W., Tang, C., and Ying, H., RSC Adv., 2018, vol. 8, pp. 37993–38001. https://doi.org/10.1039/C8RA08757A

    Article  CAS  Google Scholar 

  46. Chatterjee, C., Pong, F., and Sen, A., Green Chem., 2015, vol. 17, no. 1, pp. 40–71. https://doi.org/10.1039/C4GC01062K

    Article  CAS  Google Scholar 

  47. Khromova, S.A., Bykova, M.V., Bulavchenko, O.A., Ermakov, D.Y., Saraev, A.A., Kaichev, V.V., Venderbosch, R.H., and Yakovlev, V.A., Top. Catal., 2016, vol. 59, no. 15–16, pp. 1413–1423. https://doi.org/10.1007/s11244-016-0649-0

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Roldugina.

Additional information

Conflict of Interest

A co-author, A. L. Maksimov, is the Editor in Chief of Zhurnal Prikladnoi Khimii, the rest of the co-authors state that they have no conflict of interest to be disclosed in the present communication.

Russian Text © The Author(s), 2019, published in Zhurnal Prikladnoi Khimii, 2019, Vol. 92, No. 9, pp. 1214−1224.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roldugina, E.A., Shayakhmetov, N.N., Maksimov, A.L. et al. Hydro-Oxygenation of Furfural in the Presence of Ruthenium Catalysts Based on Al-HMS Mesoporous Support. Russ J Appl Chem 92, 1306–1315 (2019). https://doi.org/10.1134/S1070427219090167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427219090167

Keywords

Navigation