Skip to main content
Log in

Activation of Carbon Nanofibers and Their Application as Electrode Materials for Supercapacitors

  • Composite Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Surface activation of carbon materials produced by chemical vapor deposition onto a nickel plate is described. The products of pyrolysis of a gas mixture composed of propane, butane, and isobutane were for the most part nanofibers. This material was used as the active mass for electrodes of supercapacitors. The elec¬trodes were activated with a potassium hydroxide (KOH) at temperatures of 700 and 800°C in the atmosphere of argon. The activation efficiency was evaluated by the capacitance of supercapacitor cells by measurement of the electrochemical properties based on activated and unactivated materials. The salt 1.1-dimethylpyrrolidinium tetrafluoroborate (DMP) in acetonitrile (AN) was used as an electrolyte. The specific surface area of the electrodes was determined from adsorption data. It was shown that the specific surface areas of non-activated samples and samples activated at 700 and 800°C were 190, 338, and 586 m2 g-1, respectively. The specific capacitance of the samples also became higher with increasing specific surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frackowiak E., Phys. Chem., 2007, vol. 9, no. 15, pp. 1774–1785. https://doi.org/10.1039/b618139m

    CAS  Google Scholar 

  2. Frackowiak, E. and Béguin F., Carbon, 2001, vol. {39}, pp. 937–950. https://doi.org/10.1016/S0008-6223(00)00183-4

    Google Scholar 

  3. Beguin, F. and Frackowiak E., Carbon Materials for Electrochemical Energy Storage Systems, London: CRC Press, Taylor and Francis, Boca Raton, 2009, p. 529. https://doi.org/10.1201/9781420055405

    Google Scholar 

  4. Yongbin Ji, Tiehu Li, Li Xiaoxian Wang, and Qilang Lin, Appl. Surface Sci., 2007, vol. 254, no. 2, pp. 506–512. https://doi.org/10.1016/j.apsusc.2007.06.034

    Article  Google Scholar 

  5. Kierzek K., Frackowiak E., Lota G., Grygle Wicz G., and Machnikowski J., Electrochim. Acta, 2004, vol. 49, no. 7, pp. 515–523. https://doi.org/10.1016/j.electacta.2003.08.026

    Article  CAS  Google Scholar 

  6. Elmouwahidi A., Zapata-Benabithe Z., Carrasco-Marín F., and Moreno Castilla C., Bioresour. Technol., 2012, vol. 111, pp. 185–190. https://doi.org/10.1016/j.biortech.2012.02.010

    Article  CAS  Google Scholar 

  7. Tey, J.P., Careem, M.A., Yarmo, M.A., and Arof, A.K., Ionics, 2016, vol. 22, no. 7, pp.1209–1216. https://doi.org/10.1007/s11581-016-1640-2

    Article  CAS  Google Scholar 

  8. Liu Yunfang, Shen Zengmin, and Yokogawa Kiyoshi, Mater. Res. Bull., 2006, vol. 41, no. 8, pp. 1503–1512. https://doi.org/10.1016/j.materresbull.2006.01.017

    Article  CAS  Google Scholar 

  9. Jiang Q., Qu, M.Z., Zhou, G.M., Zhang, B.L., and Yu, Z.L., Mater. Lett., 2002, vol. 57, no. 4, pp. 988–991. https://doi.org/10.1016/S0167-577X(02)00911-4

    Article  CAS  Google Scholar 

  10. Yan J., Ren, Ch.E., Maleski K., Hatter, Ch.B., Anasori B., Urbankowski P., Sarycheva A., and Gogotsi Y., Adv. Funct. Mater., 2017, vol. 27, no. 30, p. 1701264. https://doi.org/10.1002/adfm.201701264

    Article  Google Scholar 

  11. Chmiola J., Yushin G., Dash, R.K., Hoffman, E.N., Fischer, J.E., Barsoum, M.W., and Gogotsi Y., Electrochem. Solid State Lett., 2005, vol. 8, no. 7, pp. A357–A360. https://doi.org/10.1149/1.1921134

    Article  CAS  Google Scholar 

  12. Peigney A., Laurent, Ch., Flahaut E., Bacsa, R.R., and Rousset A., Carbon, 2001, vol. 39, no. 4, pp. 507–514. https://doi.org/10.1016/S0008-6223(00)00155-X

    Article  CAS  Google Scholar 

  13. Qi Jiang, Mei-Zhen Qu, Bo-Lan Zhang, and Zuo-Long Yu, Carbon, 2002, no. 14, vol. 40, pp. 2743–2745. https://doi.org/10.1016/S0008-6223(02)00208-7

    Article  Google Scholar 

  14. Kumar, M. and Ando, Y., J. Nanosci. Nanotechnol., 2010, vol. 10, no. 6, pp. 3739–3758. https://doi.org/10.1166/jnn.2010.2939

    Article  CAS  Google Scholar 

  15. Baker, R.T.K., Barber, M.A., Harris, P.S., Feates, F.S., and Waite, R.J., J. Catal., 1972, vol. 26, no. 1, pp. 51–62. https://doi.org/10.1016/0021-9517(72)90032-2

    Article  CAS  Google Scholar 

  16. Baker, R.T.K. and Waite, R.J., J. Catal., 1975, vol. 37, no. 1, pp. 101–105. https://doi.org/10.1016/0021-9517(75)90137-2

    Article  CAS  Google Scholar 

  17. Li, W.Z., Xie S., Qian, L.X., Chang, B.H., Zou, B.S., Zhou, W.Y., Zhao, R.A., and Wang G., Science, 1996, vol. 274, no. 5293, pp. 1701–1703. https://doi.org/10.1016/0008-6223(96)00074-7

    Article  CAS  Google Scholar 

  18. Hernadi K., Fonseca A., Nagy, J.B., Bernaerts D., and Lucas, A.A., Carbon, 1996, vol. 34, no. 10, pp. 1249–1257. https://doi.org/10.1016/S0009-2614(98)00745-3

    Article  CAS  Google Scholar 

  19. Kong J., Cassell, A.M., and Dai H., Chem. Phys. Lett., 1998, vol. 292, nos. 4–6, pp. 567–574. https://doi.org/10.1126/science.283.5401.512

    Article  CAS  Google Scholar 

  20. Fan S., Chapline M., Frankline N., Tombler T., Cassel, A.M., and Dai H., Science, 1999, vol. 283, no. 5401, pp. 512–514. https://doi.org/10.1016/S0009-2614(99)00521-7

    Article  CAS  Google Scholar 

  21. Satiskumar, B.C., Govindaraj A., and Rao, C.N.R., Chem. Phys. Lett., 1999, vol. 307, nos. 3–4, pp. 158–162. https://doi.org/10.1126/science.274.5293.1701

    Article  Google Scholar 

  22. Sen R., Govindaraj A., and Rao, C.N.R., Chem. Phys. Lett., 1997, vol. 267, nos. 3–4, pp. 276–280. https://doi.org/10.1016/S0009-2614(97)00080-8

    Article  CAS  Google Scholar 

  23. Nikolaev P., Bronikowski, M.J., Bradley, R.K., Rohmund F., Colbert, D.T., Smith, K.A., and Smalley, R.E., Chem. Phys. Lett., 1999, vol. 313, nos. 1–2, pp. 91–97. https://doi.org/10.1016/S0009-2614(99)01029-5

    Article  CAS  Google Scholar 

  24. Sing, K.S., Pure Appl. Chem., 1985, vol. 57, pp. 603–619. https://doi.org/10.1515/iupac.57.0007

    Article  CAS  Google Scholar 

  25. Gao X., Xing W., Zhou J., Wang G., Zhuo S., Liu Z., Xue Q., and Yan Z., Electrochim. Acta, 2014, vol. 133, pp. 459–466. https://doi.org/10.1016/j.electacta.2014.04.101

    Article  CAS  Google Scholar 

  26. Brett, C.M.A. and Brett, A.M.O., Electrochemistry, Oxford Science Publ., 1993, p. 224. https://doi.org/10.1002/bbpc.19940981033

    Google Scholar 

  27. Taberna, P.L., Simon P., and Fauvarque, J.F., J. Electrochem. Soc., 2003, vol. 150, no. 3, pp. A292–A300. https://doi.org/10.1149/1.1543948

    Article  CAS  Google Scholar 

  28. Chmiola J., Yushin G., Dash R., and Gogotsi, Y., J. Power Sources, 2006, vol. 158, no. 1, pp. 765–772. https://doi.org/10.1016/j.jpowsour.2005.09.008

    Article  CAS  Google Scholar 

  29. Lust E., Jänes A., and Arulepp M., J. Electroanal. Chem., 2004, vol. 562, no. 1, pp. 33–42. https://doi.org/10.1016/j.jelechem.2003.07.034

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the National University of Science and Technology MISIS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. S. Tabarov.

Additional information

Conflict of Interest

The authors state that they have no conflict of interest to be disclosed in the present communication.

Russian Text © The Author(s), 2019, published in Zhurnal Prikladnoi Khimii, 2019, Vol. 92, No. 9, pp. 1188–1196.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabarov, F.S., Astakhov, M.V., Kalashnik, A.T. et al. Activation of Carbon Nanofibers and Their Application as Electrode Materials for Supercapacitors. Russ J Appl Chem 92, 1266–1273 (2019). https://doi.org/10.1134/S107042721909012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042721909012X

Keywords

Navigation