Skip to main content
Log in

Formation and Cathodic Reduction of Taurine Complexes with Zinc and Cobalt(II)

  • Applied Electrochemistry and Metal Corrosion Protection
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Stability constants of zinc and cobalt(II) complexes with Taurine were determined at 25°C and ionic strengths of 0.5, 1.0, and 1.5 (KNO3). The thermodynamic stability constants were calculated. The processes in which zinc-cobalt alloys are electrodeposited onto 08kp steel from electrolytes with addition of Taurine and the physicochemical properties of the coatings were examined. It was shown that the ratio between the alloy components affect the chemical composition and microstructure of the coatings. The most homogeneous and finely crystalline structure is observed for zinc-cobalt alloy coatings obtained at a cathode current density of 1 A dm−2 from an electrolyte with zinc concentration twice that of cobalt. At these concentration conditions, zinc-cobalt alloy coatings with 15.1 at % Co were obtained. The kinetic patterns of deposition of zinc-cobalt alloys at temperatures of 25 and 50°C were demonstrated. A relationship between the chemical composition, microstructure, and corrosion rate of the zinc-cobalt coatings obtained was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Okulov, V.V., Tsinkovanie. Tekhnika i tekhnologiya (Zinc Plating. Equipment and Technology), Moscow: Globus, 2008, p. 104.

    Google Scholar 

  2. Bajat, J.B., Stevanovic, S.I., and Jokic, B.M., J. Serb. Chem. Soc., 2011, 76, no. 11, pp. 1537–1550. https://doi.org/10.2298JSC110331137B

    Article  CAS  Google Scholar 

  3. Schlesinger, M. and Paunovic, M., Modern Electroplating, Hoboken: John Wiley & Sons, Inc., 2010, pp. 285–308.

    Book  Google Scholar 

  4. Vinokurov, E.G. and Bondar', V.V., Model'nye pred-stavleniya dlya opisaniya i prognozirovaniya elektroo-sazhdeniya splavov (Model Concepts for Describing and Prognosticating the Electrodeposition of Alloys), Moscow: VINITI Ross. Akad. Nauk, 2009, pp. 88–136.

    Google Scholar 

  5. Vinokurov, E.G., Russ. J. Appl. Chem., 2010, 83, no. 2, pp. 258–262. https://doi.org/10.1134S1070427210020138

    Article  CAS  Google Scholar 

  6. Evreinova, N.V., Shoshina, I.A., Naraev, V.N., and Tikho-nov, K.I., Russ. J. Appl. Chem., 2008, 81, no. 9, pp. 1180–1183. https://doi.org/10.1134S1070427208070100

    Article  CAS  Google Scholar 

  7. Taranina, O.A., Evreinova, N.V., Shoshina, I.A., Naraev, V.N., and Tikhonov, K.I., Russ. J. Appl. Chem., 2010, 83, no. 1, pp. 58–61. https://doi.org/10.1134S107042721001012X.

    Article  CAS  Google Scholar 

  8. Kamel, M.M., Anwer, Z.M., Abdel-Salam, I.T., and Ibrahim, I.S., Trans. IMF, 2010, 88, no. 4, pp. 191–197. https://doi.org/10.1179002029610X12696136822437

    Article  CAS  Google Scholar 

  9. Gharahcheshmeh, M.H. and Sohi, M.H., J. Appl. Electrochem., 2010, 40, pp. 1563–1570. https://doi.org/10.1007s10800-010-0142-6

    Article  CAS  Google Scholar 

  10. Ortiz-Aparicio, J.L., Meas, Y., Trejo, G., Ortega, R., Chapman, T.W., Chainet, E., and Ozil, P., J. Appl. Electrochem., 2011, 41, pp. 669–679. https://doi.org/10.1007s10800-011-0279-y

    Article  CAS  Google Scholar 

  11. Lacnjevac, U., Jovic, B.M., and Jovic, V.D., J. Electro chem. Soc., 2012, 159, no. 5, pp. D310–D318. https://doi.org/10.11492.042205JES

    Article  CAS  Google Scholar 

  12. Krasikov, A.V. and Krasikov, V.L., Russ. J. Appl. Chem., 2012, 85, no. 5, pp. 736–741. https://doi.org/10.1134S1070427212050096)

    Article  CAS  Google Scholar 

  13. Hammami, O., Dhouibi, L., Bercot, P., and Rezrazi, E.A., Canad. J. Chem. Eng., 2013, 91, pp. 19–26. https://doi.org/10.1002cjce.21627

    Article  CAS  Google Scholar 

  14. Sotskaya N.V., Sapronova, L.V., and Dolgikh, O.V., Russ. J. Electrochem., 2014, 50, no. 12, pp. 1134–1141. https://doi.org/10.1134S1023193514120106

    Article  Google Scholar 

  15. Vidu, R., Perez-Page, M., Quach, D.V., Chen, X.Y., and Stroeve, P., Electroanalysis, 2015, 27, pp. 2845–2856. https://doi.org/10.1002elan.201500247

    Article  CAS  Google Scholar 

  16. Shekhanov, R.F., Gridchin, S.N., and Balmasov, A.V., Surf. Eng. Appl. Electrochem., 2016, 52, no. 2, pp. 152–156. https://doi.org/10.3103S1068375516020125

    Article  Google Scholar 

  17. Shekhanov, R.F., Kuz'min, S.M., Balmasov, A.V., and Gridchin, S.N., Russ. J. Electrochem., 2017, 53, no. 11, pp. 1274–1280. https://doi.org/10.1134S1023193517110131

    Article  CAS  Google Scholar 

  18. Shekhanov, R.F., Gridchin, S.N., and Balmasov, A.V., Russ. J. Electrochem., 2018, 54, no. 4, pp. 355–362. https://doi.org/10.1134S1023193518040079

    Article  CAS  Google Scholar 

  19. Shekhanov, R.F., Gridchin, S.N., and Balmasov, A.V., Prot. Met. Phys. Chem. Surf., 2017, 53, no. 3, pp. 483–487. https://doi.org/10.1134S2070205117030224

    Article  CAS  Google Scholar 

  20. Kahoul, A., Azizi, F., and Bouaoud, M., Trans. IMF, 2017, 95, no. 2, pp. 106–113. https://doi.org/10.108000202967.2017.1265766

    Article  CAS  Google Scholar 

  21. RF Patent 2 569 618 (publ. 2015).

  22. RF Patent 2 603 526 (publ. 2016).

  23. Gridchin, S.N., Shekhanov, R.F., and Pyreu, D.F., Russ. J. Phys. Chem. A, 2015, 89, no. 2, pp. 341–343. https://doi.org/10.1134S0036024415020120

    Article  CAS  Google Scholar 

  24. Gridchin, S.N., J. Anal. Chem., 2007, 62, no. 6, pp. 522–525. https://doi.org/10.1134S1061934807060044

    Article  CAS  Google Scholar 

  25. Gridchin, S.N., Russ. J. Phys. Chem. A, 2016, 90, no. 12, pp. 2499–2501. https://doi.org/10.1134S003602441612013X

    Article  CAS  Google Scholar 

  26. Gridchin, S.N., Russ. J. Gen. Chem., 2017, 87, no. 12, pp. 2846–2851. https://doi.org/10.1134S1070363217120143

    Article  CAS  Google Scholar 

  27. Rozenfel'd, I.L., Korroziya i zashchita metallov (Corrosion and Protection of Metals), Moscow: Metallurgiya, 1969, p. 105.

    Google Scholar 

  28. Borodin, V.A., Kozlovskii, E.V., and Vasil'ev, V.P., Zh. Neorg. Khim., 1986, 31, no. 1, pp. 10–16.

    CAS  Google Scholar 

  29. Himmelblau, D.M., Applied Nonlinear Programming, New York: McGraw-Hill Inc., 1972.

    Google Scholar 

  30. Vasil'ev, V.P., Borodin, V.A., and Kozlovskii, E.V., Primenenie EVM v khimiko-analiticheskikh raschetakh (Computers in Chemical Analytical Calculations), Moscow: Vysshaya shkola, 1993, pp. 81–101.

    Google Scholar 

  31. Gridchin, S.N., Shekhanov, R.F., Bychkova, S.A., Konstanty ustoichivosti kompleksov kobal'ta(II) s taurinom i ß-alaninom (Stability constants of cobalt(II) complexes with taurine and ß-alanine), Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2016, 59, no. 3, pp. 95–96.

    Article  CAS  Google Scholar 

  32. Nazarenko, V.A., Antonovich, V.P., and Nevskaya, E.M., Gidroliz ionov metallov v razbavlennykh rastvorakh (Hydrolysis of Metal Ions in Dilute Solutions), Moscow: Atomizdat, 1978. p. 46.

    Google Scholar 

  33. Vasil'ev, V.P., Termodinamicheskie svoistva rastvorov elektrolitov (Thermodynamic Properties of Electrolyte Solutions), Moscow: Vysshaya shkola, 1982, p. 267.

    Google Scholar 

Download references

Funding

The study was carried out under the State assignment (base part), project no. 4.7104.2017/8.9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Gridchin.

Additional information

Conflict of Interest

The authors state that they have no conflict of interest to be disclosed in the present communication.

Russian Text © The Author(s), 2019, published in Zhurnal Prikladnoi Khimii, 2019, Vol. 92, No. 9, pp. 1162-1169

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gridchin, S.N., Shekhanov, R.F. Formation and Cathodic Reduction of Taurine Complexes with Zinc and Cobalt(II). Russ J Appl Chem 92, 1244–1250 (2019). https://doi.org/10.1134/S107042721909009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042721909009X

Keywords

Navigation