Skip to main content
Log in

Synthesis and Acidizing Corrosion Inhibition Performance of N-Doped Carbon Quantum Dots

  • Applied Electrochemistry and Metal Corrosion Protection
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

In this paper, citric acid was used as carbon source, diethylenetriamine and urotropine were used as precursors, and N-doped carbon dots (cdh-CDs) with luminescent properties were synthesized by microwave method. The structure of the sample was analyzed by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray diffractometry (XRD), ultraviolet spectrophotometer (UV), fluorescence spectroscopy, etc., and it was proved that cdh-CDs with an amorphous structure about 4–10 nm in diameter was synthesized. The corrosion inhibition performance of cdh-CDs in 1 M hydrochloric acid was evaluated by static weight loss and electrochemical method. The results showed that cdh-CDs have a good corrosion inhibition performance at 60°C, the inhibition efficiency can reach 81.2% when the dosage is 600 ppm. Electrochemical results showed that cdh-CDs are mixed inhibitors which mainly inhibit cathodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ortega, D.M., Materials Chemistry & Physics, 2010, 122, vol. 2, p. 485–490.

    Article  CAS  Google Scholar 

  2. Stalheim, D.G. and Douglas, G., Metallurgical Optimization of Microalloyed Steels for Oil and Gas Transmission Pipelines, Int. Conf. on High Strength Low Alloy Steels, Beijing, 2011.

  3. Stalheim, D.G., The Use of High Temperature Processing (HTP) Steel for High Strength Oil and Gas Transmission Pipeline Applications, Int. Conf. on High Strength Low Alloy Steels, Beijing, 2005.

  4. Vengosh, A., Jackson, R.B., Warner, N., et al., Env. Sci. & Techn., 2014, vol. 48, no. 15, pp. 8334–8348.

    Article  CAS  Google Scholar 

  5. Vidic, R.D., Brantley, S.L., Vandenbossche, J.M., et al., Science, 2013, vol. 340, no. 6134, pp. 1235009–1235009.

    Article  CAS  PubMed  Google Scholar 

  6. Murphy, T., Kelly, S., Ahmad, K., SSRN Electronic Journal, 2015, vol. 49, no. 7, pp. 553–557.

    Google Scholar 

  7. House, K.Z., Harvey, C.F., Aziz, M.J., et al. Env. Sci. & Techn., vol. 2, no. 2, pp. 193–205.

  8. Wahbi, Z., Guenbour, A., Makarim, H.A.E., et al., Progress in Organic Coatings, 2007, vol. 60, no. 3, pp. 224–227.

    Article  CAS  Google Scholar 

  9. Kassim, J. and Rahim, A.A., Recent Patents on Materials Science, 2008, vol. 1, no. 3, pp. 18–56.

    Google Scholar 

  10. Glossman-Mitnik, D., J. Molecular Structure THEOCHEM., 2004, vol. 681, nos. 1–3, pp. 83–88.

    Google Scholar 

  11. Das, R., Bandyopadhyay, R., and Pramanik, P., Carbon Quantum Dots from Natural Resource: A Review, 2018, 8, pp. 96–109.

    CAS  Google Scholar 

  12. Ma, B., Zhang, S., Liu, R., et al., Nanoscale, 2017, vol. 9, no. 6, pp. 2162–2171.

    Article  CAS  PubMed  Google Scholar 

  13. Wang, W., Lu, Y.C., Huang, H., et al., The Analyst, 2014, vol. 139, no. 7, pp. 1692–1696.

    Article  CAS  PubMed  Google Scholar 

  14. Huang, P, Lin, J., Wang, X., et al., Advanced Materials, 2012, vol. 24, no. 37, pp. 5104–5110.

    Article  CAS  PubMed  Google Scholar 

  15. Wang, J., Su, S., and Qiu, J., Mrs Advances, 2016, vol. 1, no. 19, pp. 1333–1338.

    Article  CAS  Google Scholar 

  16. Huang, Y., Gao, Y., Zhang, Q., et al., J. Hazardous Materials, 2018, vol. 354, pp. 54–62.

    Article  CAS  Google Scholar 

  17. El-Moneim, A. A., Akiyama, E., Habazaki, H., et al., Cor. Sci., 1998, vol. 40, no. 9, pp. 1513–1531.

    Article  CAS  Google Scholar 

  18. Marbén, G., López, I., and Valdés-Solís, T., Appl. Cat., A, General, 2009, vol. 361, no. 1, pp. 160–169.

    Article  CAS  Google Scholar 

  19. Singh, D.K., Iyer, P.K., and Giri, P.K., Carbon, 2012, vol. 50, no. 12, pp. 4495–4505.

    Article  CAS  Google Scholar 

  20. Jang, M.H., Song, S.H., Ha, H.D., et al., Carbon, 2017, vol. 118, pp. 524–530.

    Article  CAS  Google Scholar 

  21. Ghiorso, M.S., Hirschmann, M.M., Reiners, P.W., et al., Geochem. Geophy. Geosys., 2013, vol. 3, no. 5, pp. 1–35.

    Article  Google Scholar 

  22. Mourya, P., Banerjee, S., and Singh, M.M., Cor. Sci., 2014, vol. 85, pp. 352–363.

    Article  CAS  Google Scholar 

  23. Hejazi, S., Mohajernia, S., Moayed, M.H., et al., J. Ind. & Eng. Chem., 2015, vol. 25, pp. 112–121.

    Article  CAS  Google Scholar 

  24. Bedair, M.A., El-Sabbah, M.M.B., Fouda, A.S., et al., Corros. Sci., 2017, vol. 128, pp. 54–72.

    Article  CAS  Google Scholar 

  25. Cui, M., Ren, S., Zhao, H., et al., Appl. Sur. Sci., 2018, vol. 443, pp. 145–156.

    Article  CAS  Google Scholar 

  26. Abd El-Lateef, H.M., Abu-Dief, A.M., Abdel-Rahman, L.H., et al., J. Electroanal. Chem., 2015, vol. 743, pp. 120–133.

    Article  CAS  Google Scholar 

  27. Duan, Y., Factors Determining and Limiting the Impedance Behavior of Implanted Bioelectrodes in Smart Structures & Devices, International Society for Optics and Photonics, 2001.

  28. Heloisa, A. Acciari, Guastaldi, A. C., and Brett. C. M. A., Corros. Sci., 2005, vol. 47, no. 3, pp. 635–647.

    Article  CAS  Google Scholar 

  29. Gonzélez-Rodríguez, C.A., Rodríguez-Gómez, F.J., and Genescé-Llongueras, J., Electrochimica Acta, 2008, vol. 54, no. 1, pp. 86–90.

    Article  CAS  Google Scholar 

  30. Khaled, K.F. and Al-Qahtani, M.M., Materials Chemistry & Physics, 2009, vol. 113, no. 1, pp. 150–158.

    Article  CAS  Google Scholar 

  31. Zhang, J., Wei-Zhao, Y.U., Yan, Y. G., et al., Acta Physico-Chimica Sinica, 2010, vol. 26, no. 5, pp. 595–611.

    Google Scholar 

  32. Thabo, P., Lukman, O., Indra, B., et al., Molecules, 2015, vol. 20, no. 9, pp. 16004–16029.

    Article  CAS  Google Scholar 

  33. Pourghasemi Hanza, A., Naderi, R., Kowsari, E., et al., Corros. Sci., 2016, pp. 96–106.

  34. Zarrouk, A., Hammouti, B., Lakhlifi, T., et al., Corros. Sci., 2015, vol. 90, pp. 572–584.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledged financial support and research facilities provided by the Southwest Petroleum University, Institute, Chengdu, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbo Li.

Additional information

Conflict of Interest

The authors state that there is no conflict of interest to be disclosed in the present communication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, J., Fu, L., Zeng, B. et al. Synthesis and Acidizing Corrosion Inhibition Performance of N-Doped Carbon Quantum Dots. Russ J Appl Chem 92, 848–856 (2019). https://doi.org/10.1134/S1070427219060168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427219060168

Keywords

Navigation