Skip to main content
Log in

Synthesis of Polydisperse Boron Carbide and Synthesis of a Ceramic on Its Basis

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Results obtained in a study of the process of synthesis of a polydisperse boron carbide powder (average particle size 2.10 µm) characterized by a broad particle size distribution are presented. The process in which a ceramic is produced from the thus synthesized boron carbide by hot compaction was also analyzed. In some cases, a sintering additive, highly dispersed chromium carbide powder (average particle size 7.13 µm), was used. The hot compaction was performed in argon at moderate parameters: pressure 35 MPa and temperature 1950°C. The porosity and water-absorption capacity of the samples obtained are very low and do not exceed 0.02%. The average values of the bending and compression strengths were 406 and 1553 MPa, respectively. A microhardness of about 42 GPa was reached in sintering of boron carbide. The microhardness in sintering of boron carbide with addition of chromium carbide was 45–46 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kislyi, P.S., Kuzenkova, M.A., Bodnaruk, N.I., and Grabchuk, B.L., Karbid bora (Boron Carbide), Kiev: Naukova dumka, 1988.

    Google Scholar 

  2. Kremenchugsky, M.V., Savkin, G.G., Malinov, V.I., Rachkovsky, A.I., and Smorchkov, G.Yu., Nanotech. Russ., 2008, vol. 3, nos. 3–4, pp. 150–155.

    Google Scholar 

  3. Porada, A.N. and Gasik, M.I., Elektrotermiya neorganicheskikh materialov (Electrothermy of Inorganic Materials), Moscow: Metallurgiya, 1990.

    Google Scholar 

  4. Gao, Y., Etzold, A., Munhollon, T., Rafanielo, W., and Haber, R., Diamond Relat. Mater., 2016, vol. 61, pp. 14–20.

    Article  CAS  Google Scholar 

  5. Singh, R., Singh, B., Kumar, M., and Kumar, A., Ceram. Int., 2014, vol. 40, pp. 15331–15334.

    Article  CAS  Google Scholar 

  6. Tahara, N., Kakiage, M., Yanase, I., and Kobayashi, H., J. Alloys Compd., 2013, vol. 573, pp. 58–64.

    Article  CAS  Google Scholar 

  7. Najafi, A., Golestani-Fard, F., Rezaie, H.R., and Ehsani, N., Ceram. Int., 2012, vol. 38, pp. 3583–3589.

    Article  CAS  Google Scholar 

  8. Singh, R., Singh, B., Kumar, M., and Kumar, A., Ceram. Int., 2014, vol. 40, pp. 15331–15334.

    Article  CAS  Google Scholar 

  9. Asgarian, P., Nourbakhsh, A., Amin, P., Ebrahimi-Kahrizsangi, R., and Mackenzie, K.J.D., Ceram. Int., 2014, vol. 40, pp. 16399–16408.

    Article  CAS  Google Scholar 

  10. Farzaneh, F., Golestanifard, F., Sheikhaleslami, M.Sh., and Nourbakhsh, A.A., Ceram. Int., 2015, vol. 41, pp. 13658–13662.

    Article  CAS  Google Scholar 

  11. Krasnokutskii, Yu.V. and Vereshchak, V.G., Poluchenie tugoplavkikh soedinenii v plazme (Plasma Synthesis of High-Melting Compounds), Kiev: Vishcha shkola, 1987.

    Google Scholar 

  12. Lifshits, E.V., Ostapenko, I.T., Postogvard, G.I., Snezhko, A.I., and Shevyakova, E.P., Izv. Akad. Nauk SSSR, Neorg. Mater., 1986, vol. 22, no. 11, pp. 1835–1838.

    CAS  Google Scholar 

  13. Sonber, J.K., Murthy, T.S.R.Ch., Subramanian, C., Fotedar, R.K., Hubli, R.C., and Suri, A.K., Trans. Ind. Ceram. Soc., 2013, vol. 72, no. 2, pp. 100–107.

    Article  CAS  Google Scholar 

  14. Heian, E.M., Khalsa, S.K., Lee, J.W., Munir, Z.A., Yamamoto, T., and Ohyanagi, M.J., Am. Ceram. Soc., 2004, vol. 87, no. 5, pp. 779–783.

    Article  CAS  Google Scholar 

  15. Anselmi-Tamburini, U., Munir, Z.A., Kodera, Y., Imai, T., and Ohyanagi, M., J. Am. Ceram. Soc., 2005, vol. 88, no. 6, pp. 1382–1387.

    Article  CAS  Google Scholar 

  16. Kazenas, E.K. and Tsvetkov, Yu.V., Termodinamika ispareniya oksidov (Evaporation Thermodynamics of Oxides), Moscow: LKI, 2008.

    Google Scholar 

  17. Heydari, M.S. and Baharvandi, H.R., Int. J. Refract. Met. Hard Mater., 2015, vol. 51, pp. 224–232.

    Article  CAS  Google Scholar 

  18. Moshtaghioun, B.M., Ortiz, A.L., Gomez-Garcia, D., and Dominguez-Rodriguez, A., J. Eur. Ceram. Soc., 2015, vol. 35, pp. 1991–1998.

    Article  CAS  Google Scholar 

  19. Wei, R., Zhang, Y., Gong, H., Jiang, Y., and Zhang, Y., Ceram. Int., 2013, vol. 39, pp. 6449–6452.

    Article  CAS  Google Scholar 

  20. Yamada, S., Hirao, K., Yamauchi, Y., and Kanzaki, S., J. Eur. Ceram. Soc., 2003, vol. 23, pp. 561–565.

    Article  CAS  Google Scholar 

  21. Li, H., Jiang, D., Zhang, J., Lin, Q., Chen, Z., and Huang, Z., J. Eur. Ceram. Soc., 2014, vol. 34, pp. 1073–1081.

    Article  CAS  Google Scholar 

  22. Tkachenko, Yu.G., Britun, V.F., Yurchenko, D.Z., Ochkas, L.F., and Bovkun, G.A., Poroshk. Metall., 2004, no. 12, pp. 113–118.

  23. Xu, C.-M., Zeng, H., and Zhang, G.-J., Int. J. Refract. Met. Hard Mater., 2013, vol. 41, pp. 2–6.

    Article  CAS  Google Scholar 

  24. Kuvshinov, G.G., Popov, M.V., Tonkodubov, S.E., and Kuvshinov, D.G., Russ. J. Appl. Chem., 2016, vol. 89, no. 11, pp. 1407–1416.

    Article  CAS  Google Scholar 

  25. Krutskii, Yu.L., Maksimovskii, E.A., Popov, M.V., Netskina, O.V., Cherkasova, N.Yu., Kvashina, T.S., Chushenkov, V.I., Smirnov, A.I., Felofyanova, A.V., and Aparnev, A.I., Russ. J. Appl. Chem., 2018, vol. 91, no. 3, pp. 428–435.

    Article  CAS  Google Scholar 

  26. Qiu, H.-Y., Guo, W.-M., Zou, J., and Zhang, G.-J., Powder Technol., 2012, vol. 217, pp. 462–466.

    Article  CAS  Google Scholar 

  27. Novikov, N.P., Borovinskaya, I.P., and Merzhanov, A.G., Termodinamicheskii analiz reaktsii SVS (Thermodynamic Analysis of the Reaction of Self-Propagating High-Temperature Synthesis), Chernogolovka: Inst. Khim. Fiz. Akad. Nauk SSSR, 1976.

    Google Scholar 

  28. West, A.R., Solid State Chemistry and Its Applications, Wiley, Chichester, 1984.

    Google Scholar 

  29. Pecharsky, V.K. and Zavalij, P. J., Fundamentals of Powder Diffraction and Structural Characterization of Materials, Springer, 2005, pp. 469–479.

  30. Krutskii, Yu.L., Dyukova, K.D., Bannov, A.G., Ukhina, A.V., Sokolov, V.V., Pichugin, A.Yu., Krutskaya, T.M., Netskina, O.V., and Samoilenko, V.V., Izv. Vyssh. Uchebn. Zaved., Poroshk. Metall. Funkts. Pokrytiya, 2014, no. 3, pp. 3–8.

  31. Nepochatov, Yu.K., Denisova, A.A., Krasnyi, I.B., Khakhalkin, V.V., and Bandin, A.A., Sovrem. Elektron., 2016, no. 3, pp. 2–4.

  32. Kornienko, E.E., Nikulina, A.A., Bannov, A.G., Kuz’min, V.I., Mil’derbrakh, M., Bezrukova, VA., and Zhoidik, A.A., Obrab. Met.: Tekhnol., Oborud., Instrum., 2016, no. 4, pp. 52–56.

  33. Blott, S.J. and Pye, K., Earth Surf. Processes Landforms, 2001, vol. 26, pp. 1237–1248.

    Article  Google Scholar 

Download references

Funding

The study was supported by the Ministry of Science and Higher Education of the Russian Federation (State assignment no. 11.7662.2017/BCh).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. L. Krutskii.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Prikladnoi Khimii, 2019, Vol. 92, No. 6, pp. 719–727.

Conflict of Interest

The authors state that there is no conflict of interest to be disclosed in the present communication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krutskii, Y.L., Nepochatov, Y.K., Pel’, A.N. et al. Synthesis of Polydisperse Boron Carbide and Synthesis of a Ceramic on Its Basis. Russ J Appl Chem 92, 750–758 (2019). https://doi.org/10.1134/S1070427219060041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427219060041

Keywords

Navigation