Skip to main content
Log in

Recycling of Palladium and Selected Metal Ions from Simulated Spent Catalysis Waste Solution Using Novel Dithiodiglycolamides Derivatives

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The present study focusing on design and evaluation of series of eight new structurally related dithiodiglycolamides (DTDGA) as a novel promising solvent extraction reagents. The influence of the nature of the alkyl chain on the distribution ratio of Pd(II) was investigated. Both N, N-di-hexyl-N′, N′-di-octyldithiodiglycolamide (DHDODTDGA) and N, N-di(2-ethylhexyl)-N′, N′-dioctyldithiodiglycolamide (DEHDODTDGA) were chosen and applied to perform the selective recovery and separation of Pd(II) from certain commonly associated elements such as Pt(IV), Rh(III), Fe(III), Cr(II), Mn(II), Zr(II), and Ni(II) contained in hydrochloric acid solutions using n-dodecane as diluent. A systematic investigation has been carried to understand the extraction behavior of Pd(II) using the synthesized extradant. The extraction equilibrium of Pd(II) was obtained within 3–4 min. The investigated extractants showed quantitative extraction of Pd(II) at ∼ 4 M HCl. The main extracted species of Pd(II) at 3.5 M HCl is Pd.DTDGA and IR spectra of the extracted species have been also studied. The other investigated metals ions were found poorly extracted under the same extraction contortions. Quantitative back-extraction of Pd(II) in the organic phase was obtained in single contact using thiourea solution. The obtained results make the novel synthesized ligands a promising candidates for selective recovery and separation of Pd(II) from spent catalyst dissolver (SSCD) solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kononova, O.N., Duba, E.V., Shnaider, N.I., Pozdnyakov, I.A., Russ. J. Appl. Chem., 2017, vol. 90, pp. 1239–1245.

    Article  CAS  Google Scholar 

  2. Golubyatnikova, L.G., Mulagaleev, R.F., Khisamutdinov, R.A. et al., Russ. J. Appl. Chem., 2017, vol. 90, pp. 1475–1479.

    Article  CAS  Google Scholar 

  3. Mowafy, E.A., and Aly, H.F., J. Hazardous Materials, 2007, vol. 149, pp. 465–470.

    Article  CAS  Google Scholar 

  4. Ruhela, R., Sharma, J.N, Tomar, B.S., Panja, S., Tripathi, S.C., Hubli, R.C., and Suri, A.K., Radiochim Acta, 2010, vol. 98, pp. 209–214.

    Article  CAS  Google Scholar 

  5. Mohamed, D., Russ. J. Appl. Chem., 2016, vol. 89, pp. 1322–1327.

    Article  CAS  Google Scholar 

  6. Mowafy, E.A., Mohamed, D., and Alshammri, A., Sep. Sci. Tech., 2015, vol. pp. 50: 2352–2359.

    CAS  Google Scholar 

  7. Report on Critical Raw Materials for the EU-European Commission, May 2014. https://doi.org/ec.europa.eu/docsroom/documents/10010/attachments/1/translations/en/renditions/pdf.

  8. Ndlovu, J., In Proceedings of the Exchange of Good Practices on Metal By-Products Recovery Technology and Policy Challenges, Brussels, Belgium, 12–13 November 2015.

    Google Scholar 

  9. Anpilogova, G.R., Khisamutdinov, R.A., Golubyatnikova, L.G., and Murinov, Yu.I., Russ. J. Appl. Chem., 2016, vol. 89, pp. 206–211.

    Article  CAS  Google Scholar 

  10. Anpilogova, G.R., Khisamutdinov, R.A., and Murinov, Yu.I., Russ. J. Appl. Chem., 2010, vol. 83, pp. 945–950.

    Article  CAS  Google Scholar 

  11. Steinlechner, S. and Antrekowitsch, J., JOM, 2015, vol. 67, pp. 406–411.

    Article  CAS  Google Scholar 

  12. Men’shikov, V.I., Voronova, I.Yu., Proidakova, O.A., Malysheva, S.F., Ivanova, N.I., Belogorlova, N.A., Gusarova, N.K., and Trofimov, B.A., Russ. J. Appl. Chem., 2009, vol. 82, pp. 183–189.

    Article  CAS  Google Scholar 

  13. Zhidkova, T.I., Belova, V.V., Brenno, Y.Y., Zhidkov, L.L., and Khol’kin, A.I., Russ. J. Inorg. Chem., 2009, vol. 54, pp. 1502–1506.

    Article  Google Scholar 

  14. Tikhomirova, V.I., Desyatova, T.A., and Suvorova, V.A., Russ. J. Appl.Chem., 2007, vol. 80, pp. 1636–1642.

    Article  CAS  Google Scholar 

  15. Narita, H., Tanaka, M., and Morisaku, K., Abstracts of Papers, Proceedings of the International Solvent Extraction Conference, Beijing, China, 19–23 September 2005, Beijing, 2005, pp. 227–232.

    Google Scholar 

  16. Mowafy, E.A., and Mohamed, D., Oriental J. Chem., 2017, vol. 33(5), pp. 2377–2385.

    Article  CAS  Google Scholar 

  17. Mowafy, E.A., and Aly, H.F., Solvent Extr. Ion Exch., 2007, vol. 25, pp. 205–224.

    Article  CAS  Google Scholar 

  18. Mowafy, E.A., and Mohamed, D., Sep. Puri. Tech., 2014, vol. 128, pp. 18–24.

    Article  CAS  Google Scholar 

  19. Narita, H., Tanaka, M., and Morisaku, K., Min. Eng., 2008, vol. 21, pp.483–488.

    Article  CAS  Google Scholar 

  20. Ruhela, R., Sharma, J.N., Tomar, B.S., Murali, M.S., Hubli, R.C., and Suri, A.K., Tetrahedron Lett., 2011, vol. 52, pp. 3929–3932.

    Article  CAS  Google Scholar 

  21. Paiva, A.P., Martins, M.E., and Ortet, O., Metals, 2015, vol. 5, pp. 2303–2315.

    Article  CAS  Google Scholar 

  22. Mowafy, E.A., and Mohamed, D., Desalination Water Treatment, 2017, vol. 68, pp. 190–198.

    Article  CAS  Google Scholar 

  23. Das, A., Ruhela, R., Singh, R., Singh, A.K., and Hubli, R.C., Sep. Puri. Tech., 2014, vol. 125, pp. 151–155.

    Article  CAS  Google Scholar 

  24. Mowafy, E.A., and Aly, H.F., J. Radioanal. Nucl. Chem., 2000, vol. 250(1), pp. 199–203.

    Google Scholar 

  25. Paiva, A.P., Carvalho, G.I., Costa, M.C., Costa, A.M.R., and Nogueira, C., Solvent Ext. Ion Exch., 2014, vol., 32, pp. 78–94.

    Article  CAS  Google Scholar 

  26. Clayden, J., Greeves, N., Warren, S., and Wothers, P., Organic Chemistry, Oxford University Press, New York, 2001.

    Google Scholar 

  27. Paiva, A.P., Carvalho, G.I., Costa, M.C., Costa, A.M.R., and Nogueira, C., Solvent Ext. Ion. Exch. 2014, vol. 32, pp. 78–94.

    Article  CAS  Google Scholar 

  28. Yamada, M., Gandhi, M.R., Sato, D., Kaneta, Y., and Kimura, N., Ind. Eng. Chem. Res., 2016, vol. 55, pp. 8914–8921.

    Article  CAS  Google Scholar 

  29. Hagelüken, C., Platinum Metals Rev., 2012, vol. 56, pp. 29–35. https://doi.org/ec.europa.eu/docsroom/documents/10010/attachments/1/translations/en/renditions/pdf.

    Article  Google Scholar 

  30. Singh, K.K., Ruhela, R., Das, A., Kumar, M., Singh, A.K., Hubli, R.C., and Bajaj, P.N., J. Environ. Chem. Eng., 2015, vol. 3, pp. 95–103.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. A. Mowafy or A. M. Al Shammari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mowafy, E.A., Al Shammari, A.M. Recycling of Palladium and Selected Metal Ions from Simulated Spent Catalysis Waste Solution Using Novel Dithiodiglycolamides Derivatives. Russ J Appl Chem 92, 310–320 (2019). https://doi.org/10.1134/S1070427219020228

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427219020228

Keywords

Navigation