Skip to main content
Log in

Structural and Morphological Properties of Boron Doped V2O5 Thin Films: Highly Efficient Photocatalytic Degradation of Methyl Blue

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Boron doped vanadium thin films were fabricated on the micro-slide glass substrates by spray pyrolysis technique at substrate temperature of 400°C. Initially, 0.1 M vanadium(III) chloride (VCl3) solution was prepared in ethanol: water mixture (1: 4) solvent. To prepare the boron doped vanadium oxide films as the concentrations of 2, 5, 7, 10, 20%, the suitable amount of H3BO3 was added in 0.1 M VCl3 solution for each of the samples. X-Ray diffraction experiment with the produced films showed that tetragonal β-V2O5 phases formed. The synthesized boron-doped V2O5 thin films having the large surface area demonstrated the efficient catalytic properties in the photocatalytic degradation of methyl blue in water samples under Xenon light. The photocatalytic reaction efficiency was measured by recording the decrease of absorbance at 590 nm in UV-Vis absorption spectra. The methyl blue dye was degradated in approximately 30 min. The photocatalytic experiment results of the produced thin films showed that boron doping amount positively effects the degradation efficiency and reaction time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eskalen, H., Kursun, C., Asian, M., Cesme, M., and Gogebakan, M., arXiv Preprint: 170906941, 2017.

  2. Chong, M.N., Jin, B., Chow, C.W., and Saint, C., Water Res., 2010, vol. 44, pp. 2997–3027.

    Article  CAS  PubMed  Google Scholar 

  3. Xiang, Q., Lang, D., Shen, T., and Liu, F., Applied Catalysis B: Environmental, 2015, vol. 162, pp. 196–203.

    Article  CAS  Google Scholar 

  4. Konstantinou, I.K. and Albanis, T.A., Applied Catalysis B: Environmental, 2004, vol. 49, pp. 1–14.

    Article  CAS  Google Scholar 

  5. Yagub, M.T., Sen, T.K., Afroze, S., and Ang, H.M., Advances in Colloid and Interface Science, 2014, vol. 209, pp. 172–184.

    Article  CAS  PubMed  Google Scholar 

  6. Isleyen, M., Ilkme, E.S., and Soylu, G.S.P., Korean J. Chem. Eng., 2017, vol. 34, pp. 1786–1792.

    Article  CAS  Google Scholar 

  7. Behpour, M., Mehrzad, M., and Hosseinpour-Mashkani, S., J. Nanostructures, 2015, vol. 5, pp. 183–187.

    Google Scholar 

  8. Gurylev, V., Su, C.-Y., and Perng, T.-P., J. Catalysis, 2015, vol. 330, pp. 177–186.

    Article  CAS  Google Scholar 

  9. Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., and Zhang, Q., J. Hazard. Mat., 2012, vol. 211, pp. 317–331.

    Article  CAS  Google Scholar 

  10. Schneider, J., Matsuoka, M., Takeuchi, M., et al., Chem. Rev., 2015, vol. 114, p. 9919–9986.

    Article  CAS  Google Scholar 

  11. Baglov, A.V., Denisov, N.M., Borisenko, V.E., et al., Inorg. Mater., 2017, vol. 53, p. 1180.

    Article  CAS  Google Scholar 

  12. Sedneva, T.A., Lokshin, E.P., Belyaevskii, A.T., et al., Inorg. Mater., 2008, vol. 44, p. 726.

    Article  CAS  Google Scholar 

  13. Wen, J., Li, X., Liu, W., Fang, Y., Xie, J., and Xu, Y., Chinese J. Catalysis, 2015, vol. 36, pp. 2049–2070.

    Article  CAS  Google Scholar 

  14. Tian, J., Leng, Y., Zhao, Z., et al., Nano Energy, 2015, vol. 11, pp. 419–427.

    Article  CAS  Google Scholar 

  15. Chen, P., Wang, F., Chen, Z.-F., et al., Applied Catalysis B: Environmental, 2017, vol. 204, pp. 250–259.

    Article  CAS  Google Scholar 

  16. Sirelkhatim, A., Mahmud, S., Seeni, A., et al., Nano-Micro Let., 2015, vol. 7, pp. 219–242.

    Article  CAS  Google Scholar 

  17. Lee, K.M., Lai, C.W., Ngai, K.S., and Juan, J.C., Water Res., 2016, vol. 88, pp. 428–448.

    Article  CAS  PubMed  Google Scholar 

  18. Shanthi, S., Poovaragan, S., Arularasu, M. et al., J. Nanosci. & Nanotech., 2018, vol. 18, pp. 5441–5447.

    Article  CAS  Google Scholar 

  19. Shaporev, A.S., Ivanov, V.K., Baranchikov, A.E., et al., Inorg. Mater., 2007, vol. 43, p. 35.

    Article  CAS  Google Scholar 

  20. Jana, T., Maji, S., Pal, A., Maiti, R., Dolai, T., and Chatterjee, K., J. Colloid & Inter. Sci., 2016, vol. 480, pp. 9–16.

    Article  CAS  Google Scholar 

  21. Ertis, I.F. and Boz, I., International J. Chemical Reactor Engineering, 2017, vol. 15.

  22. Momeni, M., Ghayeb, Y., and Gheibee, S., Ceramics International, 2017, vol. 43, vol. 564–570.

    Article  CAS  Google Scholar 

  23. Ofori, F.A., Sheikh, F.A., Appiah-Ntiamoah, R., Yang, X., and Kim, H., Nano-Micro Letters, 2015, vol. 7, pp. 291–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang, Z.F., Song, J., Pan, L., Zhang, X., Wang, L., and Zou, J.J., Advanced Materials, 2015, vol. 27, pp. 5309–5327.

    Article  CAS  PubMed  Google Scholar 

  25. Sudha, D. and Sivakumar, P., Chemical Engineering and Processing: Process Intensification, 2015, vol. 97, pp. 112–133.

    Article  CAS  Google Scholar 

  26. Liu, X., Zeng, J., Yang, H., Zhou, K., and Pan, D., RSC Advances, 2018, vol. 8, pp. 4014–4031.

    Article  CAS  Google Scholar 

  27. Ramasami, A.K., Reddy, M., Nithyadharseni, P., Chowdari, B., and Balakrishna, G.R., J. Alloys and Compounds, 2017, vol. 695, pp. 850–858.

    Article  CAS  Google Scholar 

  28. Sun, Y., Liang, X., Xiang, H., and Yu, Y., Chinese Chemical Letters, 2017, vol. 28, pp. 2251–2253.

    Article  CAS  Google Scholar 

  29. Rajeshwari, S., Kumar, J.S., Rajendrakumar, R., Ponpandian, N., and Thangadurai, P., Mat. Res. Express, 2018, vol. 5, 025507.

    Article  CAS  Google Scholar 

  30. Vattikuti, S.P., Reddy, P.A.K., NagaJyothi, P., Shim, J., and Byon, C., J. Alloys and Compounds, 2018.

    Google Scholar 

  31. Aslam, M., Ismail, I.M., Salah, N., Chandrasekaran, S., Qamar, M.T., and Hameed, A., J. Hazard. Mat., 2015, vol. 286, pp. 127–135.

    Article  CAS  Google Scholar 

  32. Fei, H.-L., Zhou, H.-J., Wang, J.-G., Sun, P.-C., Ding, D.-T., and Chen, T.-H., Solid State Sci., 2008, vol. 10, pp. 1276–1284.

    Article  CAS  Google Scholar 

  33. Li, Y., Kuang, J.-L., Lu, Y., and Cao, W.-B., Acta Metallurgica Sinica (English Letters), 2017, vol. 30, pp. 1017–1026.

    Article  CAS  Google Scholar 

  34. Jianhua, L., Rong, Y., and Songmei, L., Rare Metals., 2006, vol. 25, pp. 636–642.

    Article  Google Scholar 

  35. Shanmugam, M., Alsalme, A., Alghamdi, A., and Jayavel, R., ACS Appl. Mat. & Int., 2015, vol. 7, pp. 14905–14911.

    Article  CAS  Google Scholar 

  36. Mi, L., Huang, Y., Qin, C., Qin, L., and Seo, H.J., J. Luminescence, 2018, vol. 194, pp. 414–419.

    Article  CAS  Google Scholar 

  37. Suresh, R., Giribabu, K., Manigandan, R., et al., J. Alloys and Compounds, 2017, p. 598, 151–160.

    Google Scholar 

  38. Kundu, S., Satpati, B., Kar, T., and Pradhan, S.K., J. Hazard. Mat., 2017, vol. 339, 161–173.

    Article  CAS  Google Scholar 

  39. Zengin, Y., and Pozan Soylu G.S., Env. Eng. Sci., vol. 35, pp. 323–332.

  40. Mousavi, M., Kompany, A., Shahtahmasebi, N., and Bagheri-Mohagheghi, M., Advances in Manufacturing, 2013, vol. 1, pp. 320–328.

    Article  CAS  Google Scholar 

  41. Mousavi, M. and Yazdi, S.T., Modern Physics Letters B, 2016, vol. 30, 1650151.

    Article  CAS  Google Scholar 

  42. Zhu, Y.-N., Zheng, G.-H., Dai, Z.-X., Mu, J.-J., and Yao, Z.-F., J. Mat. Sci. & Techn., 2017, vol. 33, pp. 834–842.

    Article  Google Scholar 

  43. Jia, Z., Kang, J., Zhang, W., et al., Appl. Cat., B: Environmental, 2017, vol. 204, pp. 537–547.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Süleyman Kerli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerli, S., Alver, Ü., Eskalen, H. et al. Structural and Morphological Properties of Boron Doped V2O5 Thin Films: Highly Efficient Photocatalytic Degradation of Methyl Blue. Russ J Appl Chem 92, 304–309 (2019). https://doi.org/10.1134/S1070427219020216

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427219020216

Keywords

Navigation