Skip to main content
Log in

Effect of the Degree of Oil Biodegradation on the Crystallization of Methane Hydrate and Ice in Water-Oil Emulsions

  • Physicochemical Studies of Systems and Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

To study the influence exerted by oxidized oil components on the nucleation and growth of gas hydrates the nucleation of methane hydrate and ice in 50 wt % emulsions of oil in native oil and two samples of the same oil subjected to biodegradation for 30 and 60 days (samples N, V30, and V60, respectively) were examined. In the course of measurements, the samples were cooled to–15°C at a constant rate of 0.14 deg min–1 and then heated to the initial temperature. The initial methane pressure in the system was 15 MPa at 20°C. In the process, the temperatures were recorded at which heat effects corresponding to the formation of hydrate/ice and the melting of these. In the case of emulsion N, no exothermic effects were manifested in the cooling stage. In the heating stage, the endothermic effects of ice melting were found in half of the samples. No effects corresponding to the decomposition of the hydrate were observed. In experiment with V30 samples, the formation of the hydrate and ice was manifested as strong exothermic effects. Ice was formed in all the experiments, and the hydrate, only in 21% of the samples. Finally, in experiments with V60, ice and the hydrate were formed in 54 and 13% of cases, respectively. Their formation was manifested as weak exothermic effects in the cooling stage. Thus, it was demonstrated that the biodegradation level of oil samples affects the nucleation of methane hydrate and ice in emulsions formed on the basis of these samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sloan, E.D. and Koh, C.A., Clathrate Hydrates of Natural Gases, London: CRC Press, Boca Rator, 2008, 3rd ed.

    Google Scholar 

  2. Chong, Z.R., Yang, S.H.B., Babu, P., Linga, P., and Li, X.S., Appl. Energy, 2016, vol. 162, pp. 1633–1652.

    Article  Google Scholar 

  3. Sloan, E.D., Hydrate Engineering, vol. 21, Bloys, J.B., Ed., Richardson, Texas, 2000.

  4. Zerpa, L.E., Salager, J.-L., Koh, C.A., Sloan, E.D., and Sum, A.K., Ind. Eng. Chem. Res., 2011, vol. 50, pp. 188–197.

    Article  CAS  Google Scholar 

  5. Aman, Z.M. and Koh, C.A., Chem. Soc. Rev., 2016, vol. 45, pp. 1678–1690.

    Article  CAS  PubMed  Google Scholar 

  6. Talatori, S. and Barth, T.J., Petrol. Sci. Eng., 2012, vol. 80, pp. 32–40.

    Article  CAS  Google Scholar 

  7. Greaves, D., Boxall, J., Mulligan, J., Sloan, E.D., and Koh, C.A., Chem. Eng. Sci., 2008, vol. 63, no. 18, pp. 4570–4759.

    Article  CAS  Google Scholar 

  8. Turner, D.J., Miller, K.T., and Sloan, E.D., Chem. Eng. Sci., 2009, vol. 64, pp. 3996–4004.

    Article  CAS  Google Scholar 

  9. Prasad, P.S.R., Chari, V.D., Sharma, D.V.S.G.K., and Murthy, S.R., Fluid Phase Equilib, 2012, vol. 318, pp. 110–114.

    Article  CAS  Google Scholar 

  10. Mohammadi, A., Manteghian, M., Haghtalab, A., Mohammadi, A.H., and Rahmati-Abkenar, M., Chem. Eng. J., 2014, vol. 237, pp. 387–395.

    Article  CAS  Google Scholar 

  11. Takahata, M., Kashiwaya, Y., and Ishii, K., Mater. Trans., 2010, vol. 51, pp. 727–734.

    Article  CAS  Google Scholar 

  12. Mu, L., Li, S., Ma, Q.L., Zhang, K., Sun, C.Y., Chen, G.J., and Yang, L.Y., Fluid Phase Equilib, 2014, vol. 362, pp. 28–34.

    Article  CAS  Google Scholar 

  13. Lv, X.F., Shi, B.H., Wang, Y., Tang, Y.X., Wang, L.Y., and Gong, J., Oil Gas Sci.Technol. Rev. IFP, 2015, vol. 70, no. 6, pp. 1111–1124.

    Article  CAS  Google Scholar 

  14. Weng, L., Tessier, S.N., Smith, K., Edd, J.F., Stott, S.L., and Toner, M., Langmuir, 2016, vol. 32, no. 36, pp. 9229–9236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Davies, S.R., Hester, K.C., Lachance, J.W., Koh, C.A., and Sloan, E.D., Chem. Eng. Sci., 2009, vol. 64, pp. 370–375.

    Article  CAS  Google Scholar 

  16. Stoporev, A.S., Manakov, A.Y., Altunina, L.K., Strelets, L.A., and Kosyakov, V.I., Canad. J. Chem., 2015, vol. 93, no. 8, pp. 882–887.

    Article  CAS  Google Scholar 

  17. Stoporev, A.S., Manakov, A.Y., Kosyakov, V.I., Shestakov, V.A., Altunina, L.K., and Strelets, L.A., Energy Fuels, 2016, vol. 30, no. 5, pp. 3735–3741.

    Article  CAS  Google Scholar 

  18. Semenov, M.E., Manakov, A.Y., Shitz, E.Y., Stoporev, A.S., Altunina, L.K., Strelets, L.A., Misyura, S.Y., and Nakoryakov, V.E., J. Therm. Anal. Calorim., 2015, vol. 119, pp. 757–767.

    Article  CAS  Google Scholar 

  19. Melikhov, I.V. and Pamiatnikh, A., J. Cryst. Growth, 1990, vol. 102, no. 4, pp. 885–890.

    Article  CAS  Google Scholar 

  20. Dalmazzone, D., Hamed, N., and Dalmazzone, C., Chem. Eng. Sci., 2009, vol. 64, pp. 2020–2026.

    Article  CAS  Google Scholar 

  21. Stoporev, A.S., Semenov, A.P., Medvedev, V.I., Sizikov, A.A., Gushchin, P.A., Vinokurov, V.A., and Manakov, A.Y., J. Cryst. Growth, 2018, vol. 485, pp. 54–68.

    Article  CAS  Google Scholar 

  22. Dalmazzone, D., Hamed, N., Dalmazzone, C., and Rousseau, L., J. Therm. Anal. Calorim., 2006, vol. 85, pp. 361–368.

    Article  CAS  Google Scholar 

  23. Dalmazzone, C., Noik, C., and Clausse, D., Oil Gas Sci. Technol. Rev. IFP, 2009, vol. 64, no. 5, pp. 543–555.

    Article  CAS  Google Scholar 

  24. Clausse, D., Gomez, F., Dalmazzone, C., and Noik, C., J. Colloid. Interface Sci., 2005, vol. 287, pp. 694–703.

    Article  CAS  PubMed  Google Scholar 

  25. Clausse, D., Wardhono, E. Y., and Lanoiselle, J.L., Colloid. Surf. A, 2014, vol. 460, pp. 519–526.

    Article  CAS  Google Scholar 

  26. Høiland, S., Askvik, K.M., Fotland, P., Alagic, E., Barth, T., and Fadnes, F.J., J. Colloid Interface Sci., 2005, vol. 287, pp. 217–225.

    Article  CAS  PubMed  Google Scholar 

  27. Bergflødt, L., Influence of Crude Oil Based Surface Active Components and Synthetic Surfactants on Gas Hydrate Behaviour: Ph.D. Thesis, University of Bergen, Bergen, Norway, 2001.

    Google Scholar 

  28. Erstad, K., Høiland, S., Fotland, P., and Barth, T., Energy Fuels, 2009, vol. 23, pp. 2213–2219.

    Article  CAS  Google Scholar 

  29. Gao, S., Energy Fuels,2008, vol. 22, pp. 3150–3153.

    Article  CAS  Google Scholar 

  30. Borgund, A.E., Høiland, S., Barth, T., Fotland, P., and Askvik, K.M., Appl. Geochem., 2009, vol. 24, pp. 777–786.

    Article  CAS  Google Scholar 

  31. Daraboina, N., Pachitsas, S., and von Solms, N., Fuel, 2015, vol. 148, pp. 186–190.

    Article  CAS  Google Scholar 

  32. Asphaltenes, Heavy Oils, and Petroleomics, Mullins, O.C., Sheu, E.Y., Hammami, A., and Marshall, A.G., Eds., New York: Springer-Verlag, 2007.

    Google Scholar 

  33. Aspenes, G, Høiland, S, Barth, T, and Askvik, K.M., J. Colloid Interface Sci., 2009, vol. 333, no. 2, pp. 533–539.

    Article  CAS  PubMed  Google Scholar 

  34. Barth, T., Høiland, S., Fotland, P., Askvik, K.M., Pedersen, B.S., and Borgund, A.E., Org. Geochem., 2004, vol. 35, nos. 11–12, pp. 1513–1525.

    Article  CAS  Google Scholar 

  35. Genov, G., Nodland, E., Skaare, B.B., and Barth, T., Org. Geochem, 2008, vol. 39, no. 8, pp. 1229–1234.

    Article  CAS  Google Scholar 

  36. Kalugina, N.P., Infrakrasnaya spektrometriya pri geokhimicheskikh issledovaniyakh neftei i kondensatov (IR Spectrometry in Geochemical Studies of Oils and Condensates), Glebovskaya, E.A., Ed., Ashkhabad: Ylym, 1986.

    Google Scholar 

  37. Tarasevich, B.N., IK spektry osnovnykh klassov organicheskikh soedinenii. Spravochnye materially (IR Spectra of Main Classes of Organic Compounds: Reference Materials), Moscow: Mosk. Gos. Univ., 2012.

    Google Scholar 

  38. Franks, F., Philos. Trans. R. Soc. A, 2003, vol. 361, no. 1804, pp. 557–574.

    Article  CAS  Google Scholar 

  39. Hayama, H., Miresinai, M., Mori, H., Verrett, J., Servio, P., and Ohmura, R., Cryst. Growth Des., 2016, vol. 16, no. 10, pp. 6084–6088.

    Article  CAS  Google Scholar 

  40. Rogers, R., Radich, J., and Xiong, S., The Multiple Roles of Microbes in the Formation, Dissociation and Stability of Seafloor Gas Hydrates: Proc. 7th Int. Conf. on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom, July 17–21, 2011, Art. 358.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Manakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoporev, A.S., Svarovskaya, L.I., Semenov, A.P. et al. Effect of the Degree of Oil Biodegradation on the Crystallization of Methane Hydrate and Ice in Water-Oil Emulsions. Russ J Appl Chem 92, 254–261 (2019). https://doi.org/10.1134/S1070427219020137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427219020137

Keywords

Navigation