Skip to main content
Log in

Photocatalytic Generation of Hydrogen in Degrading Soluble Organic Pollutants with Metal-Ceramic Composites

  • Specific Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Phase composition and morphological specific features of metal-ceramic composites synthesized by the method of self-propagating synthesis from aluminum ferrosilicon with addition of modifiers (shungite, metallic titanium) was studied. The optical properties of the composites were examined, and the energy gap widths of the semiconductors constituents of the ceramic matrix were found from electronic absorption spectra. The efficiency of the processes of hydrogen generation from solutions of “sacrificial” reagents (carboxylic acids, hydrazine, and saccharose) was evaluated in relation to their concentration and H2O2 concentration, addition of a dye, and phase composition of the composites. It was shown that hydrogen is generated from the sacrificial reagents as a result of the combination of heterogeneous and homogeneous kinds of photocatalysis. The highest hydrogen evolution output (∼830 µmol g−1 h−1) was obtained from solutions of oxalic and malic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meng, Ni, Michael, K.H.Leung, Dennis, Y.C. Leung, and Sumathy, K., Renewable Sustainable Energy Rev., 2007, vol. 11, pp. 401–125.

    Article  CAS  Google Scholar 

  2. Cheng, P., Yang, Z., Wang, H., Cheng, W., Chen, M.X., and Shangguan, W.F., Int. J. Energy Res., 2012, vol. 37, pp. 2224–2230.

    CAS  Google Scholar 

  3. Acar, C., Dincer, I., and Naterer, G.F., Int. J. Energy Res., 2016, vol. 40, no. 11, pp. 1449–1473.

    Article  CAS  Google Scholar 

  4. Kandiel, T.A. and Takanabe, K., Appl. Catal., B, 2016, vol. 184, pp. 264–269.

    Article  CAS  Google Scholar 

  5. Zhang, G., Lan, Z.-A., Lin, L., Lin, S., and Wang, X., Chem. Sci., 2016, no. 7, pp. 3062–3066.

    Google Scholar 

  6. Yue, X., Yi, S., Wang, R., Zhang, Z., and Qiu, S., Sci. Rep., 2016, no. 6, pp. 22268–22276.

    Google Scholar 

  7. Skvortsova, L.N., Chuklomina, L.N., and Batalova, V.N., Russ. J. Appl. Chem., 2014, vol. 87, no. 11, pp. 1649–1655.

    Article  CAS  Google Scholar 

  8. Skvortsova, L.N., Batalova, V.N., Chuklomina, L.N., and Mokrousov, G.M., Russ. J. Appl. Chem., 2014, vol. 87, no. 5, pp. 561–566.

    Article  CAS  Google Scholar 

  9. Solov’eva, A.A., Pashina, M.A., and Lebedeva, O.E., Russ. J. Appl. Chem., 2007, vol. 80, no. 2, pp. 275–279.

    Article  CAS  Google Scholar 

  10. Solovan, M.N., Brus, V.V., Maistruk, E.V., and Mar’yanchuk, P.D., Inorg. Mater., 2014, vol. 50, no. 1, pp. 40–45.

    Article  CAS  Google Scholar 

  11. Chukhlomina, L.N., Bolgaru, K.A., and Avramchik, A.N., Ogneupory Tekh. Keram., 2013, nos. 1–2, pp. 2–15.

    Google Scholar 

  12. Gusev, A.S., Ryndya, S.M., Kargin, N.I., and Bondarenko, E.A., J. Surf. Invest., 2010, no. 4, pp. 374–378.

    Google Scholar 

  13. Chen, Y., Cao, X., Lin, B., and Gao, B., Appl. Surf. Sci., 2013, vol. 264, pp. 845–852.

    Article  CAS  Google Scholar 

  14. Ryzhkov, M.V and Ivanovskii, A.L., Zh. Strukt. Khim., 2002, vol. 43, no. 1, pp. 21–27.

    Google Scholar 

  15. Jia, Y., Chen, X., Han, H., and Li, C., Chem., Rev., 2014, no. 114, pp. 9987–10043.

    Google Scholar 

  16. Solovan, M.M., Brus, V.V., Maryanchuk, P.D., Ilashchuk, M.I., Abashin, S.L., and Kovalyuk, Z.D., Semicond. Sci. Technol., 2015, vol. 30, 075006.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Skvortsova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skvortsova, L.N., Batalova, V.N., Bolgaru, K.A. et al. Photocatalytic Generation of Hydrogen in Degrading Soluble Organic Pollutants with Metal-Ceramic Composites. Russ J Appl Chem 92, 159–165 (2019). https://doi.org/10.1134/S10704272190100221

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S10704272190100221

Keywords

Navigation