Skip to main content
Log in

High-Energy Ion Treatment of Lavsan Films Followed by Controlled Track Etching to Obtain Asymmetric Gas-Separation Membranes

  • Specific Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The structure and gas transport properties of polymer membranes prepared from commercial Lavsan™ (polyethylene terephthalate based material) films by irradiation of the polymer films with Ar ions, followed by etching in an NaOH solution, were studied. Analysis of the polymer structure by differential scanning calorimetry showed that irradiation of the Lavsan™ matrix with Ar ions (energy 2.4 MeV nucleon−1, fluence 6 × 107 cm−2) led to a 20–30% decrease in the degree of crystallinity. The permeability of the new membranes to He, H2, O2, Ar, N2, CH4, CO2, and H2/CH4 mixture was evaluated. UV sensitization allows a fourfold increase in the permeability of the Lavsan™-based films to the gases tested relative to the films etched without preliminary UV irradiation. The composition of the H2/CH4 gas mixture does not influence the separating properties of the membranes, and the mixture separation factor coincides with the ideal value of the gas selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tahir, Z., Ilyas, A., Li, X., Bilad, M.R., Vankelecom, I.F.J., and Khan, A.L., J. Appl. Polym. Sci., 2018, vol. 135, pp. 45952–45960.

    Article  CAS  Google Scholar 

  2. Mashentseva, A.A. and Zdorovets, M.V., Petrol. Chem., 2017, vol. 57, no. 11, pp. 954–960.

    Article  CAS  Google Scholar 

  3. Dzyazko, Y.S., Rozhdestvenskaya, L.M., Zmievskii, Yu.G., Vilenskii, A.I., Myronchuk, V., Kornienko, L.V., Vasilyuk, S.V., and Tsyba, N.N., Nanoscale Res. Lett., 2015, vol. 10, p. 64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yuan, H., Yu, B., Cong, H., Peng, Q., Yang, R., Yang, S., Yang, Z., Luo, Y., Xu, T., Zhang, H., and Li, Z., Rev. Adv. Mater. Sci., 2016, vol. 44, pp. 207–220.

    CAS  Google Scholar 

  5. Banerjee, S., Handbook of Specialty Fluorinated Polymers: Preparation, Properties, and Application, Elsevier, 2015.

    Google Scholar 

  6. Michaels, A.S., Vieth, W.R., and Barrie, J.A., J. Appl. Phys., 1963, vol. 34, pp. 13–18.

    Article  CAS  Google Scholar 

  7. Berezkin, V.V., Nechaev, A.N., Fomichev, S.V., Mchedlishvili, B.V., and Zhitaryuk, N.I., Kolloidn. Zh., 1991, vol. 53, no. 2, pp. 339–342.

    CAS  Google Scholar 

  8. Syrtsova, D.A., Teplyakov, V.V., Kochnev, Yu.K., Nechaev, A.N., Apel, P.Yu., Adeniyi, O.R., and Petrik, L., Petrol. Chem., 2016, vol. 56, no. 4, pp. 294–302.

    Article  CAS  Google Scholar 

  9. Price, P.B. and Walker, R.M., J. Appl. Phys., 1962, vol. 33, no. 3, pp. 407–412.

    Google Scholar 

  10. Patent US 20060000798 A1, Publ. 2006.

  11. Vilenskii, A.I. and Tolstikhina, A.L., Izv. Ross. Akad. Nauk, Ser. Khim., 1999, no. 6, p. 1111.

    Google Scholar 

  12. Rabek, J.F., Experimental Methods in Polymer Chemistry: Physical Principles and Application, New York: Wiley, 1980.

    Google Scholar 

  13. Apel, P., Radiat. Meas., 2001, vol. 34, pp. 559–566.

    Article  CAS  Google Scholar 

  14. Cherkasov, A.N., Membr. Membr. Tekhnol., 2002, vol. 14, pp. 3–17.

    Google Scholar 

  15. Cornelius, T.W., Apel, P.Yu., Schiedt, B., Trautmann, C., Toimil-Molares, M.E., Karim, S., and Neumann, R., Nucl. Instr. Meth. Phys. Res. B: Beam Interact. Mater. At., 2007, vol. 265, pp. 553–557.

    Article  CAS  Google Scholar 

  16. Friebe, A. and Ulbricht, M., Langmuir, 2007, vol. 23, pp. 10316–10322.

    Article  CAS  PubMed  Google Scholar 

  17. Shataeva, L.K., Ryadnova, I.Yu., Nechaev, A.N., Sergeev, A.V., Chikhacheva, I.P., and Mchedlishvili, B.V., Colloid J., 2000, vol. 62, no. 1, pp. 113–118.

    CAS  Google Scholar 

  18. Nechaev, A.N., Berezkin, V.V., Vilenskii, A.I., Zhdanov, G.S., Karpukhina, L.G., Kudoyarov, M.F., Miterev, A.M., Mitrofanova, N.V., Pronin, V.A., Tsyganova, T.V., and Mchedlishvili, B.V., Ser. Krit. Tekhnol. Membr., 2000, no. 6, pp. 17–25.

    Google Scholar 

  19. Shtanko, N.I., Kabanov, V.Ya., Apel, P.Yu., Yoshida, M., and Vilenskii, A.I., J. Membrane Sci., 2000, vol. 179, pp. 155–161.

    Article  CAS  Google Scholar 

  20. Kravets, L.I., Dmitriev, S.N., Sleptsov, V.V., Elinson, V.M., Potryasai, V.V., and Orelovich, O.L., High Energy Chem., 2000, vol. 34, no. 2, pp. 116–121.

    Article  CAS  Google Scholar 

  21. Gamerith, C., Gajda, M., Ortner, A., Acero, E.H., Guebitz, G.M., and Ulbricht, M., Biotechnology, 2017, vol. 25, no. 39, part A, pp. 42–50.

    Google Scholar 

  22. Apel, P.Yu. and Ovchinnikov, V.V., Radiat. Eff. Def. Solids, 1993, vol. 126, pp. 217–220.

    Article  CAS  Google Scholar 

  23. Kuznetsov, V.I., Kuznetsov, L.V., and Shestakov, V.D., Radiat. Meas., 1995, vol. 25, nos. 1–4, pp. 735–738.

    Article  CAS  Google Scholar 

  24. Kaniukov, E.Yu., Shumskaya, E., Yakimchuk, D.V., Kozlovskiy, A.L., Ibragimova, M.A.M., and Zdorovets, V., J. Contemp. Phys. (Armen. Acad. Sci.), 2017, vol. 52, no. 2, pp. 155–160.

    Article  CAS  Google Scholar 

  25. Kuznetsov, V.I., Didyk, A.Yu., and Apel, P.Yu., Nucl. Track Radiat. Meas., 1991, vol. 19, no. 1–4, pp. 919–924.

    Article  CAS  Google Scholar 

  26. Kravets, L.I., Dmitriev, S.N., and Apel, P.Yu., Radiat. Meas., 1995, vol. 25, nos. 1–4, pp. 729–732.

    Article  CAS  Google Scholar 

  27. Molokanova, L.G., Kochnev, Yu.K., Nechaev, A.N., Chukova, S.N., and Apel, P.Yu., High Energy Chem., 2017, vol. 51, no. 3, pp. 182–188.

    Article  CAS  Google Scholar 

  28. Belkova, A.A., Sergeeva, A.I., Apel, P.Y., and Beklemishev, M.K., J. Membr. Sci., 2009, vol. 330, nos. 1–2, pp. 145–155.

    Article  CAS  Google Scholar 

  29. Agarwal, C. and Kalsi, P.C., Radiat. Phys. Chem., 2010, vol. 79, no. 8, pp. 844–847.

    Article  CAS  Google Scholar 

  30. Vilensky, A.I., Zagorski, D.L., Kabanov, V.Y., and Mchedlishvili, B.V., Radiat. Meas., 2003, vol. 36, nos. 1–6, pp. 131–135.

    Article  CAS  Google Scholar 

  31. Calcagno, L., Compagnini, G., and Foti, G., Nucl. Instr. Meth. Phys. Res. B: Beam Interact. Mater. At., 1992, vol. 65, nos. 1–4, pp. 413–422.

    Article  Google Scholar 

  32. Kudo, H., Sudo, S., Oka, T., Hama, Y., Oshima, A., Washio, M., and Murakami, T., Radiat. Phys. Chem., 2009, vol. 78, no. 12, pp. 1067–1070.

    Article  CAS  Google Scholar 

  33. Biswas, A., Lotha, S., Fink, D., Singh, J.P., Avasthi, D.K., Yadav, B.K., Bose, S.K., Khating, D.T., and Avasthi, A.M., Nucl. Instr. Meth. Phys. Res. B: Beam Interact. Mater. At., 1999, vol. 159, pp. 40–51.

    Article  CAS  Google Scholar 

  34. Efmova, E.A., Syrtsova, D.A., and Teplyakov, V.V., Sep. Purif. Technol., 2017, vol. 179, pp. 467–474.

    Article  CAS  Google Scholar 

  35. Groeninckx, G., Berghmans, H., Overbergh, N., and Smets, G., J. Polym. Sci. B: Polym. Phys, 1974, vol. 12, pp. 303–316.

    CAS  Google Scholar 

  36. Alves, N., Mano João, F., Balaguer, E., Dueñas, Jm., and Gómez Ribelles, J.L., Polymer, 2002, vol. 43, pp. 4111–4122.

    Article  CAS  Google Scholar 

  37. Wunderlich, B., Macromolecular Physics, New York: Academic, 1980, vol. 3.

  38. Michaels, A.S., Vieth, W.R., and Barrie, J.A., J. Appl. Phys., 1963, vol. 34, pp. 13–16.

    Article  CAS  Google Scholar 

  39. Kondyurin, A. and Bilek, M., Ion Beam Treatment of Polymers: Application Aspects from Medicine to Space, Elsevier, 2015.

    Google Scholar 

  40. Zhu, Z., Liu, C., Sun, Y., Liu, J., Tang, Y., Jin, Y., and Du, J., Nucl. Instr. Meth. Phys. Res. B: Beam Interact. Mater. At., 2002, vol. 191, nos. 1–4, pp. 723–727.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to colleagues from the Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, for modifying the samples and taking SEM images, to G.G. Kagramanov and S.O. Syromyatnikova for participating in the study, and to S.A. Kuptsov for performing the DSC analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Syrtsova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syrtsova, D.A., Teplyakov, V.V. High-Energy Ion Treatment of Lavsan Films Followed by Controlled Track Etching to Obtain Asymmetric Gas-Separation Membranes. Russ J Appl Chem 92, 150–158 (2019). https://doi.org/10.1134/S1070427219010021X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427219010021X

Keywords

Navigation