Skip to main content
Log in

Organic Functionalized Nano-Fe3O4 Hybrid Inhibitor for Enhancing the Anticorrosion Performance of Carbon Steel

  • Applied Electrochemistry and Metal Corrosion Protection
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Development of novel corrosion inhibitors is important for improving the anticorrosion of carbon steel because the serious carbon steel corrosion causes enormous economic losses to humankind. In this work, we demonstrated the novel organic functionalized Fe3O4 hybrid inhibitor for enhancing the anticorrosion performance of carbon steel. For this purpose, amino-Fe3O4 nano-spheres (NH2–Fe3O4) were prepared via solvothermal route, using FeCl3.6H2O as an iron source and 3-aminophenoxy-phthalonitrile as precursor. Then, the N,N-diethyl-3-amine methyl propionate (DM) was reacted with amino-Fe3O4 nano-spheres to produce the organic functionalized nano-Fe3O4 hybrid. The chemical composition and micro-structure of as-obtained organic functionalized Fe3O4 hybrid were characterized and confirmed by Fourier transform infrared, X-ray diffraction, and scanning electron microscopy. Furthermore, the anticorrosion performance of carbon steel by addition of organic functionalized nano-Fe3O4 inhibitor was investigated by AC impedance measurements and polarization curves. The research results showed that the organic functionalized nano-Fe3O4 exhibited enhanced inhibition effect for carbon steel, which can be used as a new type of carbon steel corrosion inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raps, D., Hack, T., Wehr, J., Zheludkevich, M.L., Bastos, A.C., Ferreira, M.G.S., and Nuyken, O., Corros. Sci. 2009, vol. 51, pp. 1012–1021.

    Article  CAS  Google Scholar 

  2. El-Mahdy, G.A., Atta, A.M., and Al-Lohedan, H.A., J. Taiwan Inst. Chem. E, 2014, vol. 45, no. 4, pp. 1947–1953.

    Article  CAS  Google Scholar 

  3. Singh, H.K., Yeole, K.V., and Mhaske, S.T., Chem. Eng. J. 2016, vol. 295, pp. 414–426.

    Article  CAS  Google Scholar 

  4. Asri, N.F., Husaini, T., Sulong, A.B., Majlan, E.H., and Wan, R.W.D., Int. J. Hydrogen Energ. 2017, vol. 42, no. 14, pp. 9135–9148.

    Google Scholar 

  5. Mourya, P., Banerjee, S., and Singh, M., Corros. Sci. 2014, vol. 85, pp. 352–363.

    Article  CAS  Google Scholar 

  6. Yüce, A.O., Mert, B.D., Kardaş, G., and Yazıcı, B., Corros. Sci. 2014, vol. 83, pp. 310–316.

    Article  CAS  Google Scholar 

  7. Gupta, M., Mishra, J., and Pitre, K., Int. J. Corros. 2013, vol. 2013, pp. 1–5.

    Article  CAS  Google Scholar 

  8. Li, G.L., Schenderlein, M., Men, Y., Möhwald, H., and Shchukin, D.G., Adv. Mater. Interfaces 2014, vol. 1, pp. 1300019.

    Article  CAS  Google Scholar 

  9. Zhu, W., Li, W.F., Mu, S.L., Fu, N.Q., and Liao, Z.M., Appl. Surf. Sci. 2017, vol. 405, pp. 157–168.

    Article  CAS  Google Scholar 

  10. Deflorian, F., Rossi, S., Fedel, M., and Motte, C., Prog. Org. Coat. 2010, vol. 69, no. 2, pp. 158–166.

    Article  CAS  Google Scholar 

  11. Zhan, Y.Q., Zhang, J.M., Wan, X.Y., Long, Z.H., He, S.J., and He, Y., Appl. Sur. Sci., 2018, Vol, 436, pp. 756–767.

    Google Scholar 

  12. Gao, H., Yuan, Q.Z., Zhu, X.F., Zhao, Y.P., and Liu, M.H., Langmuir 2012, vol. 28, no. 43, pp. 15410–15417.

    Article  CAS  Google Scholar 

  13. Mohammed, A.A., Corros. Sci. 2010, vol. 52, no. 10, pp. 3243–3257.

    Article  CAS  Google Scholar 

  14. Aramki, K., Corros. Sci., 2002, vol. 44, no. 4, pp.871–886.

    Article  Google Scholar 

  15. Blin, F., Leary, S.G., Wilson, K., Deacon, G.B., Junk, P.C., and Forsyth, M., J. Appl. Electrochem., 2004, vol. 34, no. 6, pp. 591–599.

    Article  CAS  Google Scholar 

  16. Martin-Gallego, M., Verdejo, R., Lopez-Manchado, M.A., and Sangermano, M., Polymer, 2011, vol. 52, pp.4664–4669.

    Google Scholar 

  17. Potts, J.R., Dreyer, D.R., Bielawski, C.W., and Ruoff, R.S., Polymer 2011, vol. 52, pp. 5–25.

    Article  CAS  Google Scholar 

  18. Zhan, Y.Q., Wan, X.Y., He, S.J., Yang, Q.B., and He, Y., Chem. Eng. J. 2018, vol. 333, pp. 132–145.

    Article  CAS  Google Scholar 

  19. Aiguo, Hu G.T.Y. and Lin, W.B., J. Am. Chem. Soc. 2005, vol. 127, pp. 12486–12487.

    Article  CAS  Google Scholar 

  20. Wang, P.Q.S., Shi, Y.F., Clark, K.K., Stucky, G.D., and Keller, A.A., J. Am. Chem. Soc., 2008, vol. 131, pp. 182–188.

    Article  CAS  Google Scholar 

  21. Hu, P.L.Y., Zuo, A.H., Guo, C.Y., and Yuan, F.L., J. Phys. Chem. C, 2009, vol. 2009, pp. 900–906.

    Article  CAS  Google Scholar 

  22. Wan, X., Zhan, Y., Long, Z., Zeng, G., Ren, Y., and He, Y., Appl. Sur. Sci. 2017, vol. 425, pp. 905–914.

    Article  CAS  Google Scholar 

  23. Wan, X., Zhan, Y., Long, Z., Zeng, G., and He, Y., Chem. Eng. J. 2017, vol. 330, pp. 491–504.

    Article  CAS  Google Scholar 

  24. Wan, X.Y., Zhan, Y.Q., Zeng, G.Y., and He, Y., Appl. Sur. Sci. 2017, vol. 393, pp. 1–10.

    Article  CAS  Google Scholar 

  25. Zhan, Y.Q., Hu, H., He, Y., Long, Z.H., Wan, X.Y., and Zeng, G.Y., Russ. J. Appl. Chem. 2016, vol. 89, no. 11, pp. 1894–1902.

    Article  CAS  Google Scholar 

  26. Wan, J.Q., Cai, W., Feng, J.T., Meng, X.X., and Liu, E.Z., J. Mater. Chem., 2007, vol. 17, p. 1188.

    Article  CAS  Google Scholar 

  27. Zhan, Y.Q., Wan, X.Y., Long, Z.H., Fan, Y., and He, Y., Russ. J. Appl. Chem. 2016, vol. 89, no. 2, pp. 297–303.

    Article  CAS  Google Scholar 

  28. Kosari, A., Moayed, M.H., Davoodi, A., Parvizi, R., Momeni, M., Eshghi, H., and Moradi, H., Corros. Sci. 2014, vol. 78, pp. 138–150.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Zhao.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, Y., Zhao, R., He, S. et al. Organic Functionalized Nano-Fe3O4 Hybrid Inhibitor for Enhancing the Anticorrosion Performance of Carbon Steel. Russ J Appl Chem 91, 2058–2064 (2018). https://doi.org/10.1134/S1070427218120194

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218120194

Keywords

Navigation