Skip to main content
Log in

Extraction and Refining of Heavy Crude Oils: Problems and Prospects

  • Reviews
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The main problems of the development of heavy oil fields and the ways of their solution are considered. The modern nontraditional methods for extracting heavy crude oils, ensuring their in situ upgrading, such as aquathermolysis, combination of catalytic upgrading and in situ combustion, and in situ electric heating, are analyzed. Research fields that could bring the technologies for heavy crude oil extraction closer to the ready-touse level are outlined. The main processes allowing heavy crude oil to be involved in processing at the existing oil refineries are considered, and the Russian experience in this field is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prognoz nauchno-tekhnologicheskogo razvitiya Rossiiskoi Federatsii na period do 2030 goda (Forecast of the Scientific and Technological Development of the Russian Federation for the Period up to 2030), Moscow: Ministerstvo Obrazovaniya i Nauki RF, 2013.

  2. Prognoz nauchno-tekhnologicheskogo razvitiya Rossii: 2030 (Forecast of the Scientific and Technological Development of Russia: 2030), Gokhberg, L.M., Ed., Moscow: Ministerstvo Obrazovaniya i Nauki RF, 2014.

  3. Muslimov, R.Kh., Georesursy, 2016, vol. 18, no. 4, part 1, pp. 246–255.

    Google Scholar 

  4. Meyer, R.F. and de Witt, W., US Geol. Survey Bull., 1990, no. 1944, pp. 14–20.

    Google Scholar 

  5. Meyer, R.F., Attanasi, E.D., and Freeman, P.A., Heavy Oil and Natural Bitumen Resources in Geological Basins of the World: Open-File Report 2007–1084, Reston, Virginia: US Geological Survey, 2007.

    Book  Google Scholar 

  6. Vremennaya instruktsiya po primeneniyu klassifikatsii zapasov mestorozhdenii i prognoznykh resursov prirodnykh neftyanykh bitumov (Temporary Instruction on the Use of the Classification of Oil Field Resources and Predicted Resources of Natural Petroleum Bitumens), Moscow: Gos Komitet po Zapasam Poleznykh Iskopaemykh, 1985.

  7. Iskritskaya, N.I., Makarevich, V.N., and Shchepochkina, A.A., Neftegaz. Geol. Teor. Prakt. 2016, vol. 11, no. 4, pp. 1–12.

    Google Scholar 

  8. Shchelokova, D.V., Probl. Sbora, Podgot. Transp. Nefti Nefteprod., 2016, vol. 103, no. 1, pp. 120–126.

    Google Scholar 

  9. Bikmukhametova, G.K., Abdullin, A.I., Emel’yanycheva, E.A., Sibgatullina, L.I., Mullakhmetova, L.I., and Mustafina, A.M., Vestn. Tekhnol. Univ. 2016, vol. 19, no. 18, pp. 31–36.

    Google Scholar 

  10. Publichnyi analiticheskii doklad po napravleniyu nauchno-tekhnologicheskogo razvitiya “Novye tekhnologii dobychi i ispol’zovaniya uglevodorodnogo syr’ya” (Public Analytical Report on the Direction of Scientific and Technological Development “New Technologies for Extraction and Use of Hydrocarbon Resources”), Moscow: Nats. Inst. Nefti i Gaza, 2014.

  11. Interview of Deputy Minister Kirill Molodtsov to Rossiiskaya Gazeta on prospects for extraction of difficultly extractable resources. https://rg.ru/2017/12/12/minenergo- v-rf-k-2035-godu-vdvoe-uvelichitsiadobycha-trudnoj- nefti.html. Cited July 10, 2018.

  12. Diyashev, R.N., in Vysokovyazkie nefti, prirodnye bitumy i ostatochnye nefti razrabatyvaemykh mestorozhdenii: Trudy nauchno-prakticheskoi konferentsii “Neft’, gaz–99” (High-Viscosity Crude Oils, Natural Bitumens, and Residual Oils of Fields Being Developed: Proc. Scientific and Practical Conf. “Oil, Gaz 99”, Kazan, Sept. 8–9, 1999, vol. II, pp. 69–83.

  13. Muslimov, R.Kh., Romanov, G.V., Iskritskaya, N.I., Kayukova, G.P., and Yusupova, T.N., Kompleksnoe osvoenie tyazhelykh neftei i prirodnykh bitumov permskoi sistemy Respubliki Tatarstan (Complex Extraction of Heavy Crude Oils and Natural Bitumens of the Perm System of the Tatarstan Republic), Kazan: Fen, 2012.

    Google Scholar 

  14. Nefti i gazovye kondensaty Rossii: Spravochnik (Oils and Gas Condensates of Russia: Handbook), Moscow: Tekhnika, 2000, 2002, vol. 2.

  15. Galiullin, E.A., Fakhrutdinov, R.Z., Bashkirtseva, N.Yu., and Ganieva, T.F., Vestn. Tekhnol. Univ. 2017, vol. 20, no. 19, pp. 35–39.

    Google Scholar 

  16. Speight, J.G., Introduction to Enhanced Recovery Methods for Heavy Oil and Tar Sands, Laramie, Wyoming (the United States): CD&W, 2016, pp. 3–48.

    Google Scholar 

  17. Gazizov, R.E., Solodova, N.L., and Vagapov, B.R., Vestn. Tekhnol. Univ. 2017, vol. 20, no. 10, pp. 17–21.

    Google Scholar 

  18. The benefits of partial upgrading: challenging the size of the prize, Oil Sands Mag. http://www.oilsandsmagazine. com/news/2018/3/5/the-benefits-of-partial-upgradingchallenging- the-size-of-the-prize. Cited July 11, 2018.

  19. Bitumen Partial Upgrading 2018 Whitepaper— AM0401A, Jacobs Consultancy, 2018.

  20. De Klerk, A., Gray, M.R., and Zerpa, N., Future Energy, Letcher, T.M., Ed., Elsevier, 2014, pp. 95–116.

    Google Scholar 

  21. Orr, B., ES-SAGD: Past, Present and Future, SPE Annual Technical Conf. and Exhibition, New Orleans, Louisiana, Oct. 4–7, 2009, SPE-129518-STU.

    Google Scholar 

  22. Leaute, R.P. and Carey, B.S., J. Can. Petrol. Technol., 2007, vol. 46, no. 9, PETSOC-07-09-01.

    Google Scholar 

  23. Sleep, S., McKellar, J.M., Bergerson, J.A., and MacLean, H.L., J. Cleaner Prod., 2017, vol. 144, pp. 90–99.

    Article  CAS  Google Scholar 

  24. Petrov, S.M., Ibragimova, D.A., Abdelsalam, Ya.I., and Kayukova, G.P., Petrol. Chem. 2016, vol. 56, no. 1, pp. 21–26.

    Article  CAS  Google Scholar 

  25. Montgomery, W., Watson, J., Lewis, J.M., Zeng, H., and Sephton, M.A., Energy Fuels 2018, vol. 32, no. 4, pp. 4651–4654.

    Article  CAS  Google Scholar 

  26. Fan, H., J. Can. Petrol. Technol., 2003, vol. 42, no. 3, p. 11.

    Article  CAS  Google Scholar 

  27. Fan, H., Zhang, Y., and Lin, Y., Fuel 2004, vol. 83, pp. 2035–2039.

    Article  CAS  Google Scholar 

  28. Arcelus-Arrillaga, P., Pinilla, J.L., Hellgardt, K., and Millan, M., Energy Fuels 2017, vol. 31, pp. 4571–4587.

    Article  CAS  Google Scholar 

  29. Eletskii, P.M., Sosnin, G.A., Zaikina, O.O., Kukushkin, R.G., and Yakovlev, V.A., J. Sib. Fed. Univ., Chemistry, 2017, vol. 10, no. 4, pp. 545–572.

    Google Scholar 

  30. Zakirova, Z.R., Malova, Yu.N., Garipova, L.R., Mukhametzyanova, A.A., Ibragimova, D.A., and Petrov, S.M., Vestn. Tekhnol. Univ. 2017, vol. 20, no. 5, pp. 30–33.

    CAS  Google Scholar 

  31. Maity, S.K., Ancheyta, J., and Marroquın, G., Energy Fuels 2010, vol. 24, pp. 2809–2816.

    Article  CAS  Google Scholar 

  32. Tumanyan, B.P., Petrukhina, N.N., Kayukova, G.P., Foss, L.E., Romanov, G.V., and Nurgaliev, D.K., Russ. Chem. Rev. 2015, vol. 84, no. 11, pp. 1145–1175.

    Article  CAS  Google Scholar 

  33. Scheele-Ferreira, E.M., Scott, C.E., Perez-Zurita, M.J., and Pereira-Almao, P.R., Ind. Eng. Chem. Res. 2017, vol. 56, pp. 7131–7140.

    Article  CAS  Google Scholar 

  34. Hou, J., Li, C., Gao, H., Chen, M., Huang, W., Chen, Y., and Zhou, C., Fuel 2017, vol. 200, pp. 193–198.

    Article  CAS  Google Scholar 

  35. Huang, S., Cao, M., and Cheng, L., Energy Fuels 2018, vol. 32, pp. 4850–4858.

    Article  CAS  Google Scholar 

  36. Song, S.-F., Guo, Z., Bai, Y., Gu, X.-F., Chen, G., Zhang, J., Li, B.-Q., and Zhang, Z.-F., Petrol. Sci. Technol. 2017, vol. 35, pp. 661–666.

    Article  CAS  Google Scholar 

  37. Chen, G., Yan, J., Bai, Y., Gu, X., Zhang, J., Li, Y., and Jeje, A., Petrol. Sci. Technol. 2017, vol. 35, no. 2, pp. 113–119.

    Article  CAS  Google Scholar 

  38. Kudryashov, S.I., Afanas’ev, I.S., Petrashov, O.V., Vakhin, A.V., Sitnov, S.A., Akhmadiyarov, A.A., Varfolomeev, M.A., and Nurgaliev, D.K., Neft. Khoz. 2017, no. 8, pp. 30–34.

    Google Scholar 

  39. Alemán-Vázquez, L.O., Torres-Mancera, P., Ancheyta, J., and Ramírez-Salgado, J., Energy Fuels 2016, vol. 30, pp. 9050–9060.

    Article  CAS  Google Scholar 

  40. Liu, Y. and Fan, H., Energy Fuels 2002, vol. 16, pp. 842–846.

    Article  CAS  Google Scholar 

  41. Patent US 4506733, Publ. 1985.

  42. Kayukova, G.P., Foss, L.E., Feoktistov, D.A., Romanov, G.V., Vakhin, A.V., and Petrukhina, N.N., Petrol. Chem. 2017, vol. 57, no. 8, pp. 657–665.

    Article  CAS  Google Scholar 

  43. Xu, H. and Pu, C., Chem. Technol. Fuels Oils 2018, vol. 53, no. 6, pp. 913–921.

    Article  CAS  Google Scholar 

  44. Jiang, S., Liu, X., and Zhong, L., in SPE Int. Symp. on Oilfield Chemistry, Houston, Febr. 2–4, 2005, SPE-91973-MS.

    Google Scholar 

  45. Zhong, L.G., Liu, Y.J., and Fan, H.F., in SPE Int. Improved Oil Recovery Conf. in Asia Pacific. Kuala Lumpur, Oct. 20–21, 2003, SPE-84863-MS.

    Google Scholar 

  46. Wen, S., Zhao, Y., Liu, Y. and Hu, S., in 2007 SPE Int. Symp. on Oilfield Chemistry, Houston, Febr. 28–March 2, 2007, SPE-106180-MS.

    Google Scholar 

  47. Jia, N.l, Zhao, H., Yang, T., Ibatullin, T., and Gao, J.-G., Energy Fuels 2016, vol. 30, pp. 5291–5299.

    Article  CAS  Google Scholar 

  48. Sitnov, S.A., Mukhamatdinov, I.I., Vakhin, A.V., Ivanova, A.G., and Voronina, E.V., J. Petrol. Sci. Eng., 2018, vol. 169, pp. 44–50.

    Article  CAS  Google Scholar 

  49. Lee, D.G. and Noureldin, N.A., Fuel Sci. Technol. Int. 1993, vol. 11, no. 1, pp. 173–200.

    Article  CAS  Google Scholar 

  50. Speight, J.G., Oil Sand Production Processes, Oxford (the United Kingdom): Elsevier, 2013.

    Google Scholar 

  51. Rychkovskii, A.A. and Vol’f, A.A., Nauka, Tekh. Obraz., 2017, no. 2, pp. 42–45.

    Google Scholar 

  52. Guo, K., Li, H., and Yu, Z., Fuel 2016, vol. 185, pp. 886–902.

    Article  CAS  Google Scholar 

  53. Turta, A., Enhanced Oil Recovery Field Case Studies, Sheng, J., Ed., Elsevier, 2013, pp. 440–534.

    Google Scholar 

  54. Perkins, G., J. Power Energy, 2018, vol. 232, no. 1, pp. 56–73.

    Article  CAS  Google Scholar 

  55. Hart, A., Shah, A., Leeke, G., Greaves, M., and Wood, J., Ind. Eng. Chem. Res. 2013, vol. 52, pp. 15394–15406.

    Article  CAS  Google Scholar 

  56. Hart, A., Recent Adv. Petrochem. Sci., 2018, vol. 4, no. 2, ID 555633.

    Google Scholar 

  57. Hart, A. and Wood, J., Energies, 2018, vol. 11, paper 636, https://doi.org/10.3390/en11030636

    Google Scholar 

  58. Hart, A., Wood, J., and Greaves, M., J. Petrol. Sci. Eng., 2017, vol. 156, pp. 958–965.

    Article  CAS  Google Scholar 

  59. Hart, A., Wood, J., and Greaves, M., J. Anal. Appl. Pyrol., 2017, vol. 128, pp. 18–26.

    Article  CAS  Google Scholar 

  60. Al-Marshed, A., Hart, A., Leeke, G., Greaves, M., and Wood, J., Energy Fuels 2015, vol. 29, pp. 6306–6316.

    Article  CAS  Google Scholar 

  61. Brown, A.R., Hart, A., Coker, V.S., Lloyd, J.R., and Wood, J., Fuel 2016, vol. 185, pp. 442–448.

    Article  CAS  Google Scholar 

  62. Yusupova, T.N., Ganeeva, Y.M., Romanov, G.V., Barskaya, E.E., Morozov, V.I., Okhotnikova, E.S., and Vakhin, A.V., Petrol. Chem. 2017, vol. 57, no. 3, pp. 198–202.

    Article  CAS  Google Scholar 

  63. Hassanzadeh, H., Harding, T.G., Moore, R.G., Mehta, S.A., and Ursenbach, M.G., Energy Fuels 2016, vol. 30, pp. 7001–7013.

    Article  CAS  Google Scholar 

  64. Harding, T.G., Zanon, S., Imran, M., and Kerr, R.K., SPE Canada Heavy Oil Technical Conf., Alberta (Canada), June 7–9, 2016, SPE-180752-MS.

    Google Scholar 

  65. Patent Appl. WO 2015/066796, Publ. 2015.

  66. Alaei, M., Bazmi, M., Rashidi, A., and Rahimi, A., J. Petrol. Sci. Eng., 2017, vol. 158, pp. 47–55.

    Article  CAS  Google Scholar 

  67. Maes, J., Muggeridge, A.H., Jackson, M.D., Quintard, M., and Lapene, A., Fuel 2017, vol. 195, pp. 299–313.

    Article  CAS  Google Scholar 

  68. Gollakota, A.R.K., Reddy, M., Subramanyam, M.D., and Kishore, N., Renew. Sustain. Energy Rev. 2016, vol. 58, pp. 1543–1568.

    Article  CAS  Google Scholar 

  69. Ghandi, A. and Lin, C.-Y.C., Energy Strategy Rev. 2014, vol. 3, pp. 63–71.

    Article  Google Scholar 

  70. Guseo, R., Energy Policy 2011, vol. 39, no. 9, pp. 5572–5577.

    Article  Google Scholar 

  71. Carrillo, J.A. and Corredor, L.M., Fuel Process. Technol. 2013, vol. 109, pp. 156–162.

    Article  CAS  Google Scholar 

  72. Lee, J.M., Shin, S., Ahn, S., Chun, J.H., Lee, K.B., Mun, S., Jeon, S.G., Na, J.G., and Nho, N.S., Fuel Process. Technol. 2014, vol. 119, pp. 204–210.

    Article  CAS  Google Scholar 

  73. Ahn, S., Shin, S., Im, S.I., Lee, K.B., and Nho, N.S., Korean J. Chem. Eng. 2016, vol. 33, no. 1, pp. 265–270.

    Article  CAS  Google Scholar 

  74. Cao, F., Jiang, D., Li, W., Du, P., Yang, G., and Ying, W., Chem. Eng. Process.: Process Intens. 2010, vol. 49, no. 1, pp. 91–96.

    Article  CAS  Google Scholar 

  75. Chen, S.-L., Jia, S.-S., Luo, Y.-H., and Zhao, S.-Q., Fuel 1994, vol. 73, no. 3, pp. 439–442.

    Article  CAS  Google Scholar 

  76. Adewusi, V.A., Ademodi, B., and Oshinowo, T., Fuel Process. Technol. 1991, vol. 27, no. 1, pp. 21–34.

    Article  CAS  Google Scholar 

  77. Curtis, C.W., Tsai, K.-J., and Guin, J.A., Fuel Process. Technol. 1987, vol. 16, pp. 71–87.

    Article  CAS  Google Scholar 

  78. Ghassemi, H., Beheshti, S.M., and Shahsavan-Markadeh, R., Fuel 2015, vol. 162, pp. 258–263.

    Article  CAS  Google Scholar 

  79. Meratizaman, M., Monadizadeh, S., Ebrahimi, A., Akbarpour, Н., and Amidpour, M., Int. J. Hydrogen Energy, 2015, vol. 40, no. 6, pp. 2578–2600.

    Article  CAS  Google Scholar 

  80. Vaezi, M., Passandideh-Fard, M., Moghiman, M., and Charmchi, M., Fuel 2011, vol. 90, no. 2, pp. 878–885.

    Article  CAS  Google Scholar 

  81. Borges, C.N., Mendes, M.A., and Alves, R.M.B., Comput. Aided Chem. Eng. 2015, vol. 37, pp. 515–520.

    Article  CAS  Google Scholar 

  82. Rodríguez-Reinoso, F., Santana, P., Romero Palazon, E., Diez, M.-A., and Marsh, H., Carbon, 1998, vol. 36, nos. 1–2, pp. 105–116.

    Article  Google Scholar 

  83. Heintz, E.A., Carbon 1996, vol. 34, no. 6, pp. 699–709.

    Article  CAS  Google Scholar 

  84. Furimsky, E., Fuel Process. Technol. 2000, vol. 67, no. 3, pp. 205–230.

    Article  CAS  Google Scholar 

  85. Singh, J., Kumar, S., and Garg, M.O., Fuel Process. Technol. 2012, vol. 94, no. 1, pp. 131–144.

    Article  CAS  Google Scholar 

  86. Speight, J.G., Sci. Iran. 2012, vol. 19, no. 3, pp. 569–573.

    Article  CAS  Google Scholar 

  87. Chao, K., Chen, Y., Li, J., Zhang, X., and Dong, B., Fuel Process. Technol. 2012, vol. 104, pp. 174–180.

    Article  CAS  Google Scholar 

  88. Omole, O., Olieh, M.N., and Osinowo, T., Fuel 1999, vol. 78, no. 12, pp. 1489–1496.

    Article  CAS  Google Scholar 

  89. Wang, D.-Z., Appl. Catal. 1990, vol. 66, no. 1, pp. 7–8.

    Article  Google Scholar 

  90. Sadrameli, S.M., Fuel 2016, vol. 173, pp. 285–297.

    Article  CAS  Google Scholar 

  91. Kaminski, T. and Husein, M.M., Fuel Process. Technol. 2018, vol. 181, pp. 331–339.

    Article  CAS  Google Scholar 

  92. Angeles, M.J., Leyva, C., Ancheyta, J., and Ramírez, S., Catal. Today, 2014, vols. 220–222, pp. 274–294.

    Google Scholar 

  93. Castañeda, L.C., Muñoz, J.A.D., and Ancheyta, J., Fuel 2012, vol. 100, pp. 110–127.

    Article  CAS  Google Scholar 

  94. Dufresne, P., Appl. Catal. A: General 2007, vol. 322, pp. 67–75.

    Article  CAS  Google Scholar 

  95. Ashizawa, M., Hara, S., Kidoguchi, K., and Inumaru, J., Energy 2005, vol. 30, no. 11, pp. 2194–2205.

    Article  CAS  Google Scholar 

  96. Smith Moreno-Arciniegas, L., Rodríıguez-Corredor, F.-E., Afanador-Rey, L.-E., and Grosso-Vargas, J.L., Tecnol. Fut. 2009, vol. 3, no. 5, pp. 189–202.

    Google Scholar 

  97. Chhiti, Y., Salvador, S., Commandre, J.-M., Broust, F., and Couhert, C., Energy Fuels 2010, vol. 25, no. 1, pp. 345–351.

    Article  CAS  Google Scholar 

  98. Krylova, A.Yu., Kinet. Catal. 2012, vol. 53, no. 6, pp. 742–746.

    Article  CAS  Google Scholar 

  99. Rana, M.S., Samano, V., Ancheyta, J., and Diaz, J.A.I., Fuel 2007, vol. 86, pp. 1216–1231.

    Article  CAS  Google Scholar 

  100. Khadzhiev, S.N., Gerzeliev, I.M., Kapustin, V.M., Kadiev, Kh.M., Dement’ev, K.I., and Pakhmanova, O.A., Petrol. Chem. 2011, vol. 1, pp. 32–38.

    Article  CAS  Google Scholar 

  101. Khadzhiev, S.N., Kadiev, Kh.M., Zekel’, L.A., and Kadieva, M.Kh., Petrol. Chem. 2018, vol. 58, no. 7, pp. 535–541.

    Article  CAS  Google Scholar 

  102. Khadzhiev, S.N., Kadiev, Kh.M., and Kadieva, M.Kh., Petrol. Chem. 2014, vol. 54, no. 5, pp. 323–346.

    Article  CAS  Google Scholar 

  103. Khadzhiev, S.N., Petrol. Chem. 2011, vol. 51, no. 1, pp. 1–15.

    Article  CAS  Google Scholar 

  104. Kadieva, M.Kh., Khadzhiev, S.N., Kadiev, Kh.M., Gyul’maliev, A.M., and Yakovenko, T.V., Petrol. Chem. 2011, vol. 51, no. 1, pp. 16–23.

    Article  CAS  Google Scholar 

  105. Energeticheskaya strategiya na period do 2035 goda (Energy Strategy for the Period up to 2035), Moscow: Ministerstvo Energetiki RF, 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Lyadov.

Additional information

Original Russian Text © A.S. Lyadov, N.N. Petrukhina, 2018, published in Zhurnal Prikladnoi Khimii, 2018, Vol. 91, No. 12, pp. 1683−1692.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyadov, A.S., Petrukhina, N.N. Extraction and Refining of Heavy Crude Oils: Problems and Prospects. Russ J Appl Chem 91, 1912–1921 (2018). https://doi.org/10.1134/S1070427218120029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218120029

Keywords

Navigation