Skip to main content
Log in

Sulfide Catalysts for Production of Motor Fuels from Fatty Acid Triglycerides

  • Reviews
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Patents dealing with the production of motor fuel components by hydrodeoxygenation of renewable raw materials based on fatty acid triglycerides are analyzed. Various methods of using sulfide catalysts in hydrodeoxygenation of fatty acid triglycerides and of their mixtures with petroleum fractions are described. The ways to overcome problems that arise in hydrodeoxygenation, based on using sulfide catalysts differing in the active component and support composition, are considered. For example, the use of supported MoS2 catalysts free of Co and Ni ensures the conversion of fatty acid triglycerides along the “direct hydrodeoxygenation” pathway to avoid the formation of carbon oxides and related process problems. The use of sulfide catalysts on zeolite-containing supports allows synthesis of products with improved low-temperature properties due to isomerization (or mild hydrocracking) of С15–С18 alkanes formed by hydrodeoxygenation of fatty acid triglycerides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huber, G.W., Iborra, S., and Corma, A., Chem. Rev. 2006, vol. 106, no. 9, pp. 4044–4098.

    Article  CAS  PubMed  Google Scholar 

  2. Melero, J.A., Iglesias, J., and Garcia, A., Energy Environ. Sci. 2012, vol. 5, no. 6, pp. 7393–7420.

    Article  CAS  Google Scholar 

  3. Yakovlev, V.A., Khromova, S.A., and Bukhtiyarov, V.I., Russ. Chem. Rev. 2011, vol. 80, no. 10, pp. 911–926.

    Article  CAS  Google Scholar 

  4. Mittelbach, M., Eur. J. Lipid Sci. Technol. 2015, vol. 117, no. 11, pp. 1832–1846.

    Article  CAS  Google Scholar 

  5. Al-Sabawi, M. and Chen, J., Energy Fuels 2012, vol. 26, no. 9, pp. 5373–5399.

    Article  CAS  Google Scholar 

  6. Satyarthi, J.K., Chiranjeevi, T., Gokak, D.T., and Viswanathan, P.S., Catal. Sci. Technol. 2013, vol. 3, no. 1, pp. 70–80.

    Article  CAS  Google Scholar 

  7. Kubiсka, D. and Tukaс, V., Adv. Chem. Eng. 2013, vol. 42, pp. 141–194.

    Article  CAS  Google Scholar 

  8. Melero, J.A., Iglesias, J., and Garcia, A., Energy Environ. Sci. 2012, vol. 5, no. 6, pp. 7393–7420.

    Article  CAS  Google Scholar 

  9. Kubicka, D. and Horacek, J., Appl. Catal. 2011, vol. 394, pp. 9–17.

    Article  CAS  Google Scholar 

  10. Senol, O.I., Viljava, T.-R., and Krause, A.O.I., Appl. Catal. A 2007, vol. 236, pp. 236–244.

    Article  CAS  Google Scholar 

  11. Mawhood, R., Gazis, E., de Jong, S., Hoefnagels, R., and Slade, R., Biofuels, Bioprod. Biorefin., 2016, vol. 10, pp. 462–484.

    Article  CAS  Google Scholar 

  12. Kalnes, T. Terry, M., Shonnard, D.R., and Koers, K.P., Environ. Prog. Sust. Energy 2009, vol. 28, pp. 111–120.

    Article  CAS  Google Scholar 

  13. Neste Oil Corporation—Company Presentation, Neste Oil. https://tapahtumat.tekes.fi/up loads/013d4138/NO_RD-7349.pdf. Cited Sept. 26, 2018.

  14. Advanced Renewable Fuel Alternative to Traditional Diesel, Honeywell UOP, URL: https://www.uop. com/processing-solutions/renewables/greendiesel/# ecofining. Cited Sept. 26, 2018.

  15. Honeywell Green Jet Fuel—Advanced Renewable Fuel Alternative to Traditional Jet Fuel, Honeywell UOP. https://www.uop.com/processing-solu tions/renewables/green-jet-fuel/#uop-renewable-jet-fuel-process. Cited Sept. 27, 2018.

  16. Axens and Vegan Technology Selected by Total for Its First Biorefinery in France, Axens. https://www.axens.net/news-and-events/news/369/axens-vegan®-technologyselected- by-total-for-its-first-biorefinery-in-france.html#. WgFRQJgY5TZ. Cited Sept. 27, 2018.

  17. Profitable Today—Ready for the Future, Halder Topsoe. https://www.topsoe.com/products/hydroflextmtechnology. Cited Sept. 28, 2018.

  18. Vasquez, M.C., Silva, E.E., and Castillo, E.F., Biomass Bioenergy 2017, vol. 105, pp. 197–206.

    Article  CAS  Google Scholar 

  19. Annual Report, Conoco Phillips. http://www. conocophillips.com/company-reports-resources/annualreport/. Cited Sept. 28, 2018.

  20. Tyutyunnikov, B.N., Khimiya zhirov (Chemistry of Fats), Moscow: Kolos, 1992.

    Google Scholar 

  21. Patent US 4992605 A, Publ. 1991.

  22. Patent US 5705722 A, Publ. 1998.

  23. Patent RU 2566762, Publ. 2015.

  24. Patent RU 2534993, Publ. 2014.

  25. Patent US 8795392 B2, Publ. 2014.

  26. Patent US 8084655 B2, Publ. 2011.

  27. Patent EP 2639286 A2, Publ. 2013.

  28. Patent US 15888019, Publ. 2018.

  29. Patent RU 2464297, Publ. 2012.

  30. Patent US 8546626 B2, Publ. 2013.

  31. Patent US 8552235 B2, Publ. 2013.

  32. Patent US 9109168 B2, Publ. 2015.

  33. Patent EP 1396531 A2, Publ. 2004.

  34. Patent EP 1681337 A1, Publ. 2006.

  35. Patent EP 1741768 A1, Publ. 2007.

  36. Patent RU 2566763, Publ. 2015.

  37. Patent RU 2608522, Publ. 2015.

  38. Patent US 8809610 B2, Publ. 2014.

  39. Patent US 8912374 B2, Publ. 2014.

  40. Patent US 8026401 B2, Publ. 2011.

  41. Patemt FR 2951733 B1, Publ. 2012.

  42. Patent EP 2226375 A1, Publ. 2010.

  43. Patent EP 2428548 A1, Publ. 2012.

  44. Patent US 8304592 B2, Publ. 2012.

  45. Patent CA 2738932 A1, Publ. 2010.

  46. Patent US 8822744 B2, Publ. 2014.

  47. Patent US 8912375 B2, Publ. 2014.

  48. Patent US 9598645 B2, Publ. 2017.

  49. Patent US 9556387 B2, Publ. 2009.

  50. Patent RU 2495082, Publ. 2013.

  51. Patent US 8686204 B2, Publ. 2014.

  52. Patent US 8507738 B2, Publ. 2013.

  53. Patent EP 1693432 B1, Publ. 2009.

  54. Patent US 8785701 B2, Publ. 2014.

  55. Patent WO 2012088145 A2, Publ. 2012.

  56. Patent WO 2014065765 A1, Publ. 2014.

  57. Patent US 9523046 B2, Publ. 2016.

  58. Patent FR 2949475 B1, Publ. 2012 (WO 2011027044 A2).

  59. Patent EP 2473274 B1, Publ. 2014.

  60. Patent RU 2663669, Publ. 2018.

  61. Patent US 7232935 B2, Publ. 2007.

  62. Patent RU 2652991, Publ. 2018.

  63. Patent US 8884086 B2, Publ. 2014.

  64. Patent US 9523050 B2, Publ. 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Vlasova.

Additional information

Original Russian Text © A.A. Porsin, E.N. Vlasova, G.A. Bukhtiyarova, A.L. Nuzhdin, V.I. Bukhtiyarov, 2018, published in Zhurnal Prikladnoi Khimii, 2018, Vol. 91, No. 12, pp. 1675−1682.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porsin, A.A., Vlasova, E.N., Bukhtiyarova, G.A. et al. Sulfide Catalysts for Production of Motor Fuels from Fatty Acid Triglycerides. Russ J Appl Chem 91, 1905–1911 (2018). https://doi.org/10.1134/S1070427218120017

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218120017

Keywords

Navigation