Skip to main content
Log in

Technology for Obtaining Low-Concentration Composite Coagulant‒Flocculant

  • Technological Production of New Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Dissolution of nepheline-containing raw materials was studied in relation to the concentrations of dry formulation and aqueous acid solutions. The conditions in which a low-concentration composite coagulant‒flocculant can be obtained on the basis of a nepheline concentrate were determined. These conditions make it possible to synthesize the composite reagent in conventional reagent facilities of wastewater-treatment stations and, simultaneously, to take technological measures for improving the quality of purified water, with the secondary contamination of water by compounds of aluminum minimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ITS (Engineering-Technological Reference Book) 47–2017. Systems for Processing (Handling) of Wastewater and Effluent Gases in Chemical Industry.

  2. Gosudarstvennyi doklad “O sostoyanii i ispol’zovanii vodnykh resursov Rossiiskoi Federatsii v 2016 godu” (State report “On the state and use of water resources of the Russian Federation in 2016”), Moscow: NIA-Priroda, 2017.

  3. Fomina, V.F., Vodosnab. Sanit. Tekh., 2011, no. 8, pp. 48–55.

    Google Scholar 

  4. Draginskii, V.L., Alekseeva, L.P., and Getmanets, S.V., Koagulyatsiya v tekhnologii ochistki prirodnykh vod (Coagulation in Technology for Purification of Natural Water), Moscow: GUP VIMI, 2005.

    Google Scholar 

  5. Kul’skii, L.A. and Strokach, P.P., Tekhnologiya ochistki prirodnykh vod (Technology for Purification of Natural Water), Kiev: Vishcha shkola, 1982.

    Google Scholar 

  6. Chigurova, S.V., Bashkov, A.S., and Dyagileva, A.B., Vodoochistka, 2011, no. 8, pp. 46–48.

    Google Scholar 

  7. RF Patent 2 225 838 (publ. 2004).

  8. RF Patent 2 149 845 (publ. 2000).

  9. RF Patent 2 436 855 (publ. 2011).

  10. Frog, B.N., Vodopodgotovka (Water Treatment), Moscow: Mosk. Gos. Univ., 2001.

    Google Scholar 

  11. Zapol’skii, A.K. and Baran, A.A., Koagulyanty i flokulyanty v protsessakh ochistki vody: Svoistva. Poluchenie. Primenenie (Coagulants and Flocculants inWater-Purification Processes: Properties, Synthesis, Application), Moscow: Khimiya, 1987.

    Google Scholar 

  12. Sorokina, I.D. and Dresvyannikov, A.F., Vestn. Kazan. Tekhnol. Univ., 2009, no. 4, pp. 146–158.

    Google Scholar 

  13. Dyagileva, A.B. and Smirnova, A.I., Tsellyul., Bum. Karton, 2012, no. 1, pp. 58–61.

    Google Scholar 

  14. Chernoberezhskii, Yu.M., Dyagileva, A.B., and Lorentsson, A.V., Zh. Prikl. Khim., 1999, vol. 72, no. 9, pp. 1496–1498

    CAS  Google Scholar 

  15. Chernoberezhskii, Y.M., Dyagileva, A.B., and Lorentzson, A.V., Russ. J. Appl. Chem., 1999, vol. 72, no. 9, pp. 1581–1582).

    Google Scholar 

  16. Chernoberezhskii, Y.M., Mineev, D.Y., Dyagileva, A.B., Lorentzson, A.V., and Belova, Y.V., Russ. J. Appl. Chem., 2002, vol. 75, no. 10. R. 1696–1699.

    Article  CAS  Google Scholar 

  17. RF Patent 2 137 852 (publ. 1999).

  18. RF Patent 2 220 098 (publ. 2003).

  19. Kruchinina, N.E. and Kuzin, E.N., Vestn. Kazan. Tekhnol. Univ., 2015, vol. 18, no. 6, pp. 78–82.

    Google Scholar 

  20. RF Patent 2 283 286 (publ. 2006).

  21. RF Patent 2 039 711 (publ. 1995).

  22. NSAM № 487-KhS (Recommendation of the Scientific Council on Analytical Chemistry no. 487-KhS). Opredelenie natriya, magniya, alyuminiya, kremniya, fosfora, kaliya, kal’tsiya, titana, margantsa i zheleza v gornykh porodakh, ob”ektakh okruzhayushchei sredy atomnoemissionnym metodom s induktivno svyazannoi plazmoi (Determination of Sodium, Magnesium, Aluminum, Silicon, Phosphorus, Potassium, Calcium, Titanium, Mabganese, and Iron in Rocks,and Environmental Objects by Atomic-Emission Method with Inductively Coupled Plasma), Moscow: FGUP Vses. Nauchn.-Issl. Inst. Mineral’n. Syr’ya im. N.M. Fedorovskogo, 2010.

  23. RD (Regulatory Document) 52.24.449–2008, Mass Concentration of Aluminum in Water, Procedure for Measurements by Photometric Method with Sulfo-Chrome or Chrom-AZurol S, Rostov-on-Don: GU Gidrokhim. Inst., 2008.

  24. Kruchinina, N.E., Yanchilin, A.B., and Zhilina, O.V., Khim. Prom-st Segodnya, 2009, no. 2, pp. 8–13.

    Google Scholar 

  25. Zakharov, V.I., Kalinnikov, V.T., Matveev, V.A., and Maiorov, D.V., Khimiko-tekhnologicheskie osnovy i razrabotka novykh napravlenii kompleksnoi pererabotki i ispol’zovaniya shchelochnykh alyumosilikatov (Chemical-Technological Foundation and Development of New Areas of Integrated Processing and Application of Alkaline Aluminosilicates), Apatity: Kola Nauchn. Tsentr Ross. Akad. Nauk, 1995.

    Google Scholar 

  26. Kruchinina, N.E., Ekol. Proizvod., 2006, no. 2, pp. 46–50.

    Google Scholar 

  27. Velyaev, Yu.O., Maiorov, D.V., and Zakharov, K.V., Khim. Tekhnol., 2011, no.10, pp. 614–620.

    Google Scholar 

  28. Yanchilin, A.B., Synthesis and Properties of Anmorphous Silica in Sulfuric Acid Processing of Nepheline-containing Raw Material, Cand. Sci. Dissertation, Moscow, 2002.

    Google Scholar 

  29. Kuzin, E.N., Technology of Coagulants Based on Wastes from Apatite-Nepheline Flotation in Engineering Protection of Environmental Objects, Cand. Sci. Dissertation, Moscow, 2015.

    Google Scholar 

  30. Lokshin, E.P., Tareeva, O.A., and Yelizarova, I.R., Russ. J. Appl. Chem., 2016, vol. 89, no. 7, pp. 1082–1088.

    Article  CAS  Google Scholar 

  31. Gun’ko, V.M. and Zarko, V.I., Khim., Fiz. Tekhnol. Poverkhn., 2006, nos. 11–12, pp. 73–87.

    Google Scholar 

  32. Lorentsson, A.V., Chernoberezhskii, Yu.M., and Dyagileva, A.B., Kolloid. Zh., 2002, vol. 64, no. 1, pp. 94–96

    Google Scholar 

  33. Lorentzson, A.V., Chernoberezhskii, Y.M., and Dyagileva, A.B., Colloid J., 2002, vol. 64, no. 1, pp. 87–89.

    Article  Google Scholar 

  34. Dyagileva, A.B., Vakhrusheva, A.A., and Smirnova, A.I., Vestn. SPb Gos. Univ. Ind. Tekhnol. Design, Ser. 1, Estestv. Tekhn. Nauki, 2017, no. 4, pp. 71–77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Smirnova.

Additional information

Original Russian Text © A.I. Smirnova, A.B. Dyagileva, A.E. Prismakova, 2018, published in Zhurnal Prikladnoi Khimii, 2018, Vol. 91, No. 11, pp. 1633−1641.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, A.I., Dyagileva, A.B. & Prismakova, A.E. Technology for Obtaining Low-Concentration Composite Coagulant‒Flocculant. Russ J Appl Chem 91, 1841–1848 (2018). https://doi.org/10.1134/S1070427218110150

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218110150

Keywords

Navigation