Skip to main content
Log in

Decoration of Carbon Nanomaterial Powders with Dispersed Platinum Metal Particles

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Carbon nanomaterials (fullerite, detonation nanodiamonds, Taunit, fullerenol, fullerene-containing black) were decorated with platinum group metal nanoparticles in situ in one step by low-temperature combustion (~250–270°С) of a powdered mixture of platinum metal acetylacetonate [Pt-M(асас)n, Pt-М = Pt(II), Pd(II), Rh(III), Ir(III), acac = CH3COCHCOCH3, n is the oxidation state of Pt-М] with carbon nanomaterials in air. As shown by thermal analysis, the process is based on thermal oxidative degradation of the organometallic complex, catalyzed by carbon nanomaterials, with oxidation (combustion) of the organic moiety and release of the metal into the condensed phase. The thermal process in an open system occurs in the glowing mode (210–250°С); the size of the nanoparticles formed is 7–30 nm. Under the conditions restricting the air access to the reaction mixture and free outflow of gaseous products formed by oxidation of acac ligands, the nanoparticle size decreases to 3–10 nm. The particle size depends on the metal amount in the initial powder mixture and on the support morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu, B., Deng, W., Li, R., Zhang, Q., Wang, Y., Delplanque-Janssens, F., Paul, D., Desmedt, F., and Miquel, P., J. Catal., 2014, vol. 319, pp. 15–26.

    Article  CAS  Google Scholar 

  2. Prasad, V. and Vasanthkumar, M.S., J. Nanoparticle Res., 2015, vol. 17, no. 10, pp. 1–8.

    Article  CAS  Google Scholar 

  3. Shi, J., Hu, X., Zhang, J., Tang, W., Li, H., Shen, X., and Saito, N., Prog. Nat. Sci: Mater. Int., 2014, vol. 24, no. 6, pp. 593–598.

    Article  CAS  Google Scholar 

  4. Alegre, C., Gálvez, M.E., Moliner, R., and Lazaro, M.J., Catalysts, 2015, vol. 5, no. 1, pp. 392–405.

    Article  CAS  Google Scholar 

  5. Palanisamy, S., Thirumalraj, B., Chen, S.M., Ali, M.A., and Al-Hemaid, F.M.A., J. Colloid Interface Sci., 2015, vol. 448, no. 15, pp. 251–256.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, X., Ma, L.X., and Zhang, Y.C., Electrochim. Acta, 2015, vol. 177, no. 20, pp. 118–127.

    Article  CAS  Google Scholar 

  7. Song, M.J., Kim, J.H., Lee, S.K., and Lim, D.S., Anal Sci., 2011, vol. 27, no. 10, pp. 985–989.

    Article  CAS  PubMed  Google Scholar 

  8. Leghrib, R., Dufour, T., Demoisson, F., Claessens, N., Reniers, F., and Llobet, E., Sens. Actuators B: Chemical, 2011, vol. 160, no. 1, pp. 974–980.

    Article  Google Scholar 

  9. Bai, Z., Niu, L., Chao, S., Yan, H., Cui, Q., Yang, L., Qiao, J., and Jiang, K., Int. J. Electrochem. Sci., 2013, vol. 8, pp. 10068–10079.

    CAS  Google Scholar 

  10. Yao, Y., Chen, F., Nie, A., Lacey, S.D., Jacob, R.J., Xu, S., Huang, Z., Fu, K., Dai, J., Salamanca-Riba, L., Zachariah, M.R., Shahbazian-Yassar, R., and Hu, L., ACS Cent. Sci., 2017, vol. 3, no. 4, pp. 294–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Choi, I.D., Lee, H., Shim, Y.B., and Lee, D., Langmuir, 2010, vol. 26, no. 13, pp. 11212–11216.

    Article  CAS  PubMed  Google Scholar 

  12. Merche, D., Dufour, T., Baneton, J., Caldarella, G., Debaille, V., Job, N., and Reniers, F., Plasma Processes Polym., 2016, vol. 13, no. 1, pp. 91–104.

    Article  Google Scholar 

  13. Mercado-Zúñiga, C., Vargas-García, J.R., Hernán dez-Pérez, M.A., Figueroa-Torres, M.Z., Cervantes-Sodi, F., and Torres-Martinez, L.M., J. Alloys Compd., 2014, vol. 615, pp. S538–S541.

    Article  CAS  Google Scholar 

  14. Wang, Y., He, Q., Ding, K., Wei, H., Guo, J., Wang, Q., O’Connor, R., Huang, X., Luo, Z., Shen, T.D., Wei, S., and Guo, Z., J. Electrochem. Soc., 2015, vol. 162, no. 7, pp. F755–F763.

    Article  CAS  Google Scholar 

  15. Isakova, V.G., Petrakovskaya, E.A., Glushchenko, G.A., Bulina, N.V., and Churilov, G.N., Russ. J. Appl. Chem., 2005, vol. 78, no. 9, pp. 1386–1390.

    Article  CAS  Google Scholar 

  16. Isakova, V.G., Petrakovskaya, E.A., Isakov, V.P., Bayukov, O.A., and Velikanov, D.A., Phys. Met. Metallogr., 2006, vol. 102, suppl. no. 1, pp. S57–S60.

    Article  Google Scholar 

  17. Isakova, V.G. and Isakov, V.P., Phys. Solid State, 2004, vol. 46, no. 4, pp. 622–624.

    Article  CAS  Google Scholar 

  18. Isakova, V.G., Isakov, V.P., Lyamkin, A.I., Zharikova, N.V., Yunoshev, A.S., and Nemtsev, I.V., Int. J. Chem., 2015, vol. 7, no. 1, pp. 1–9.

    CAS  Google Scholar 

  19. Goncharova, E.A., Isakova, V.G., Tomashevich, E.V., and Churilov, G.N., Vestn. Sib. Gos. Aerokosm. Univ., 2009, no. 1 (22), pp. 90–93.

    Google Scholar 

  20. Boehm, H.P., Carbon, 1994, vol. 32, no. 5, pp. 759–769.

    Article  CAS  Google Scholar 

  21. Patent RU2495880, Publ. 2013.

  22. Vargas, J.R. and Goto, T., Mater. Trans., 2003, vol. 44, no. 9, pp. 1717–1728.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Isakova.

Additional information

Original Russian Text © V.G. Isakova, I.V. Osipova, A.I. Dudnik, A.V. Cherepakhin, N.V. Zharikova, I.V. Nemtsev, M.N. Volochaev, 2018, published in Zhurnal Prikladnoi Khimii, 2018, Vol. 91, No. 7, pp. 1040−1048.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isakova, V.G., Osipova, I.V., Dudnik, A.I. et al. Decoration of Carbon Nanomaterial Powders with Dispersed Platinum Metal Particles. Russ J Appl Chem 91, 1209–1216 (2018). https://doi.org/10.1134/S1070427218070212

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218070212

Keywords

Navigation