Skip to main content
Log in

Lignin: Applications and Ways of Utilization (Review)

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The main applications and ways of utilization of industrial lignins, which are a large-tonnage waste from pulp and hydrolysis plants, are considered. The first group of methods includes nonthermal methods of lignin processing with preservation of the natural polymeric structure of lignin. The second group of methods includes thermal methods for lignin processing with the formation of low- and high-molecular-mass compounds and combustible gas. The largest-tonnage application fields of lignins are building, mining, metallurgical, oil-extracting, and agro industries, and also water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Argyropoulos, D.S. and Menachem, S.B., Adv. Biochem. Eng. Biotechnol., 1997, vol. 57, pp. 127–158.

    CAS  Google Scholar 

  2. Glasser, W.G., Northey, R.A., and Schulz, T.P., Lignin: Historical, Biological, and Material Perspectives, Washington: Am. Chem. Soc., 1999.

    Book  Google Scholar 

  3. Food and Agriculture Organization of the United Nations, FAO Statistical Division, 2016.

  4. Gosselink, R.J.A., Jong, E., Guran, B., and Abacherli, A., Ind. Crops Prod., 2004, vol. 20, pp. 121–129.

    Article  CAS  Google Scholar 

  5. Afanas’ev, N.I., Tel’tevskaya, S.E., Makarevich, N.A., and Parfenova, L.N., Struktura i fiziko-khimicheskie svoistva lignosul’fonatov (Structure and Physicochemical Properties of Lignosulfonates), Yekaterinburg: Ural’sk. Otdel. Ross. Akad. Nauk, 2005.

    Google Scholar 

  6. Ohman, F., Wallmo, H., and Theliander, H., Nordic Pulp Paper Res. J., 2007, vol. 22, pp. 188–193.

    Article  Google Scholar 

  7. Minaevskaya, L.V. and Shchegolikhina, N.A., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2012, vol. 55, no. 10, pp. 114–116.

    CAS  Google Scholar 

  8. Volchatova, I.V. and Medvedeva, S.A., Agrokhimiya, 2014, no. 11, pp. 30–33.

    Google Scholar 

  9. Baumberger, S., Chemical Modification, Properties, and Usage of Lignin, Hu, T.Q., Ed., New York: Kluwer Acad., 2002.

  10. Gogotov, A.F., Stankevich, V.K., Kiselev, V.P., Chaika, A.A., and Dronov, V.G., Khim. Inter. Ustoich. Razv., 2013, vol. 21, pp. 305–310.

    CAS  Google Scholar 

  11. Sheverdyaev, O.N., Belov, P.S., and Shkitov, A.M., Poverkhnostno- aktivnye veshchestva. Svoistva, tekhnologiya, primenenie, ekologicheskie problemy (Surfactants. Properties, Technology, Use, and Environmental Problems), Moscow: Vses. Zaochnyi Politekh. Inst., 1992.

    Google Scholar 

  12. Lange, K.R., Surfactants: A Practical Handbook, Munich: Hanser, 1999.

    Google Scholar 

  13. Rabia, H., Oilwell Drilling Engineering: Principles and Practice, Springer, 1986.

    Google Scholar 

  14. Petrov, N.A., Davydova, I.N., Akodis, M.M., Komkova, L.P., and Mamaeva, O.G., Neftegaz. Delo, 2006, vol. 4, no. 1, pp. 63–74.

    Google Scholar 

  15. Vadetskii, Yu.V., Burenie neftyanykh i gazovykh skvazhin (Drilling of Oil and Gas Wells), Moscow: Akademiya, 2003.

    Google Scholar 

  16. Cateto, C.A., Barreiro, M.F., Ottati, C., Lopretti, M., Rodrigues, A.E., and Belgacem, M.N., J. Cell. Plast., 2014, vol. 50, no. 1, pp. 81–95.

    Article  CAS  Google Scholar 

  17. Pizzi, A. and Mittal, K.L., Handbook of Adhesive Technology, CRC, 2017.

    Google Scholar 

  18. Hon, D.N.S., Chemical Modification of Lignocellulosic Materials, New York: Dekker, 1995.

    Google Scholar 

  19. Meister, J.J., Polymer Modification: Principles, Techniques, and Applications, CRC, 2000.

    Book  Google Scholar 

  20. Sellers, T.J., Forest Prod. J., 2001, vol. 51, no. 6, pp. 12–22.

    CAS  Google Scholar 

  21. Nedelcu, D., Lohan, N.M., Volf, I., and Comaneci, R., Composites. Part B: Engineering, 2016, vol. 103, pp. 84–89.

    Article  CAS  Google Scholar 

  22. Colmenares, J.C., Varma, R.S., and Nair, V., Chem. Soc. Rev., 2017, vol. 46, no. 22, pp. 6675–6686.

    Article  CAS  PubMed  Google Scholar 

  23. Colmenares, J.C., Ouyang, W., Ojeda, M., Kuna, E., Chernyaeva, O., Lisovytskiy, D., De, S., Luque, R., and Balu, A.M., Appl. Catal. B, 2016, vol. 183, pp. 107–112.

    Article  CAS  Google Scholar 

  24. Lora, J.H. and Glasser, W.G., J. Polym. Environ., 2002, vol. 10, no. 1, pp. 39–48.

    Article  CAS  Google Scholar 

  25. Rostrup-Nielsen, J.R., Science, 2005, vol. 308, pp. 1421–1422.

    Article  CAS  PubMed  Google Scholar 

  26. Sun, Y. and Cheng, J., Bioresource Technol., 2002, vol. 83, pp. 1–11.

    Article  CAS  Google Scholar 

  27. Walton, N.J., Mayer, M.J., and Narbad, A., Phytochemistry, 2003, vol. 63, no. 5, pp. 505–515.

    Article  CAS  PubMed  Google Scholar 

  28. Araújo, J.D.P., Grande, C.A., and Rodrigues, A.E., Chem. Eng. Res. Des., 2010, vol. 88, no. 8, pp. 1024–1032.

    Article  CAS  Google Scholar 

  29. Kuznetsov, B.N., Sharypov, V.I., Kuznetsova, S.A., Taraban’ko, V.E., and Ivanchenko, N.M., Int. J. Hydrogen Energy, 2009, vol. 34, pp. 7051–7056.

    Article  CAS  Google Scholar 

  30. Tuntsev, D.V., Safin, R.G., Arslanova, A.R., Khismatov, R.G., and Kitaev, S.V., Vestn. Kazansk. Tekhnol. Univ., 2014, vol. 17, no. 16, pp. 147–150.

    CAS  Google Scholar 

  31. Bayerbach, R. and Meier, D., J. Anal. Appl. Pyrol., 2009, vol. 85, no. 1, pp. 98–107.

    Article  CAS  Google Scholar 

  32. Mullen, C.A. and Boateng, A.A., Fuel Process. Technol., 2010, vol. 91, no. 11, pp. 1446–1458.

    Article  CAS  Google Scholar 

  33. Yan, N., Zhao, C., Dyson, P.J., Wang, C., Liu, L.T., and Kou, Y., ChemSusChem, 2008, vol. 1, no. 7, pp. 626–629.

    Article  CAS  PubMed  Google Scholar 

  34. Celeghini, R.M.S. and Lanças, F.M., Energy Sources, 2001, vol. 23, no. 4, pp. 369–375.

    Article  CAS  Google Scholar 

  35. Sharypov, V.I., Beregovtsova, N.G., Kuznetsov, B.N., Baryshnikov, S.V., Cebolla, V.L., Weber, J.V., Collura, S., Finqueneisel, G., and Zimny, T., J. Anal. Appl. Pyrol., 2006, vol. 76, no. 1, pp. 265–270.

    Article  CAS  Google Scholar 

  36. Kuznetsov, B.N., Kuznetsova, S.A., and Taraban’ko, V.E., Ross. Khim. Zh., 2004, vol. 48, no. 3, pp. 4–19.

    CAS  Google Scholar 

  37. Gogotov, A.F., Rybal’chenko, N.A., and Babkin, V.A., Khim. Inter. Ustoich. Razv., 2001, vol. 9, no. 2, pp. 161–167.

    CAS  Google Scholar 

  38. Taraban’ko, V.E., Koropachinskaya, N.V., Kudryashev, A.V., and Kuznetsov, B.N., Russ. Chem. Bull., 1995, vol. 44, no. 2, pp. 367–371.

    Article  Google Scholar 

  39. Sazanov, Yu.N. and Gribanov, A.I., Russ. J. Appl. Chem., 2010, vol. 83, no. 2, pp. 175–194.

    Article  CAS  Google Scholar 

  40. Evstigneev, E.I., Russ. J. Appl. Chem., 2013, vol. 86, no. 2, pp. 258–265.

    Article  CAS  Google Scholar 

  41. Belyaev, E.Yu., Khim. Rast. Syr’ya, 2000, no. 2, pp. 5–15.

    Google Scholar 

  42. Kuznetsov, B.N. and Shchipko, M.L., Bioresource Technol., 1995, vol. 52, pp. 13–19.

    Article  CAS  Google Scholar 

  43. Yunusov, M.P., Perezdrienko, I.V., Namazbaev, Sh.N., and Molodozhenyuk, T.B., Khim. Prom–st., 2003, vol. 80, no. 8, pp. 8–11.

    Google Scholar 

  44. Hayashi, J., Muroyama, K., Gomes, V.G., and Watkinson, A.P., Carbon, 2002, vol. 40, no. 4, pp. 630–632.

    Article  CAS  Google Scholar 

  45. Baklanova, O.N., Plaksin, G.V., Drozdov, V.A. Duplyakin, V.K., Chesnokov, N.V., and Kuznetsov, B.N., Carbon, 2003, vol. 41, no. 9, pp. 1793–1800.

    Article  CAS  Google Scholar 

  46. Rabinovich, M.L., Cell. Chem. Technol., 2010, vol. 44, no. 4, pp. 173–186.

    CAS  Google Scholar 

  47. Boriouchkine, A., Zakharov, A., and Jämsä-Jounela, S.L., Chem. Eng. Sci., 2012, vol. 69, no. 1, pp. 669–678.

    Article  CAS  Google Scholar 

  48. Spravochnik potrebitelya biotopliva (Biofuel Consumer’s Handbook), Veres, V., Ed., Tallinn: Tallinskii Tekh. Univ., 2005.

    Google Scholar 

  49. Kislov, V.M., Glazov, S.V., Chervonnaya, N.A., Patronova, L.I., Salganskaya, M.V., and Manelis, G.B., Solid Fuel Chem., 2008, vol. 42, no. 3, pp. 135–139.

    Article  Google Scholar 

  50. Salganskii, E.A., Kislov, V.M., Glazov, S.V., Zholudev, A.F., and Manelis, G.B., Combust., Explos., Shock Waves, 2010, vol. 46, no. 5, pp. 528–532.

    Article  Google Scholar 

  51. Kislov, V.M. Salganskii, E.A., Tsvetkov, M.V., and Tsvetkova, Yu.Yu., Russ. J. Appl. Chem., 2017, vol. 90, no. 5, pp. 716–720.

    Article  CAS  Google Scholar 

  52. Podlesniy, D.N., Zaichenko, A.Yu., Salgansky, E.A., and Salganskaya, M.V., Russ. J. Appl. Chem., 2017, vol. 90, no. 11, pp. 1783–1788.

    Article  CAS  Google Scholar 

  53. Zaichenko, A.Yu., Glazov, S.V., Salgansky, E.A., Kislov, V.M., Podlesniy, D.N., Zhavoronkov, A.I., and Salganskaya, M.V., Theor. Found. Chem. Eng., 2017, vol. 51, no. 5, pp. 673–679.

    Article  CAS  Google Scholar 

  54. Amelin, I.I., Salgansky, E.A., Volkova N.N., Zholudev, A.F., Alekseev, A.P., Polianczyk, E.V., and Manelis, G.B., Russ. Chem. Bull., 2011, vol. 60, no. 6, pp. 1150–1157.

    Article  CAS  Google Scholar 

  55. Salganskaya, M.V., Glazov, S.V., Salganskii, E.A., Kislov, V.M., Zholudev, A.F., and Manelis, G.B., Russ. J. Phys. Chem. B, 2008, vol. 2, no. 1, pp. 71–76.

    Google Scholar 

  56. Kolesnikova, Yu.Yu., Kislov, V.M., and Salgansky, E.A., Russ. J. Phys. Chem. B, 2016, vol. 10, no. 5, pp. 791–795.

    Article  CAS  Google Scholar 

  57. Osada, M., Sato, O., Watanabe, M., Arai, K., and Shirai, M., Energy Fuels, 2006, vol. 20, no. 3, pp. 930–935.

    Article  CAS  Google Scholar 

  58. Osada, M., Hiyoshi, N., Sato, O., Arai, K., and Shirai, M., Energy Fuels, 2007, vol. 21, no. 3, pp. 1400–1405.

    Article  CAS  Google Scholar 

  59. Osada, M., Hiyoshi, N., Sato, O., Arai, K., and Shirai, M., Energy Fuels, 2008, vol. 22, no. 2, pp. 845–849.

    Article  CAS  Google Scholar 

  60. Ponomarev, A.V., Bludenko, A.V., Chulkov, V.N., Liakumovich, A.G., Yakushev, I.A., and Yarullin, R.S., Mendeleev Commun., 2008, vol. 18, no. 3, pp. 156–157.

    Article  CAS  Google Scholar 

  61. Ponomarev, A.V., Radiat. Phys. Chem., 2009, vol. 78, no. 5, pp. 345–350.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Tsvetkov.

Additional information

Original Russian Text © M.V. Tsvetkov, E.A. Salganskii, 2018, published in Zhurnal Prikladnoi Khimii, 2018, Vol. 91, No. 7, pp. 988−997.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsvetkov, M.V., Salganskii, E.A. Lignin: Applications and Ways of Utilization (Review). Russ J Appl Chem 91, 1129–1136 (2018). https://doi.org/10.1134/S1070427218070108

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218070108

Keywords

Navigation