Skip to main content
Log in

Zinc-Bromine Alkali-Salt Membrane Chemical Power Cell

  • Applied Electrochemistry and Metal Corrosion Protection
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Zinc-bromine alkali-salt membrane-type chemical power cell was assembled and studied. The open-circuit voltage (OCV) of the zinc-bromine alkali-salt membrane chemical power cell (CPC) was experimentally obtained (2.30 V). This value is close to the theoretically calculated value of the electromotive force (EMF) of the cell (2.27 V) and exceeds the EMF and OCV of many known power cells using a single homogeneous-composition aqueous electrolyte and having no ion-exchange membrane. The maximum theoretical specific energy of the zinc-bromine alkali-salt membrane CPC is 317.3 W h kg–1, which is lower that the corresponding values for the zinc-silver and zinc-nickel power cells and exceeds that of nickel-iron, nickel-cadmium, and lead sulfuric acid CPCs. It is shown that the cell under study can be used as an electric battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. US Patent 4 510 218 (publ. 1985).

  2. US Patent 4 824 743 (publ. 1989).

  3. Tomazic, G.S., Proc. 11th Int. Electric Vehicles Symp., Italy, 1992, pp. 79–85.

    Google Scholar 

  4. Handbook of Batteries, Linden, David, Ed., New York: McGrawHill, Inc., 1995, 2nd ed.

  5. Khimicheskie istochniki toka. Spravochnik (Chemical Power Cells), Korovin, N.V. and Skundin, A.M., Eds., Moscow: Izd. Mosk. Energet. Inst., 2003.

    Google Scholar 

  6. Jae-Deok Jeon, Hyeon Sun Yang, Joonmok Shim, Hyun Sik Kim, and Jung Hoon Yang, Electrochim. Acta, 2014, vol. 127, pp. 397–402.

    Article  CAS  Google Scholar 

  7. Liqun Zhang, Huamin Zhang, Qinzhi Lai, Xianfeng Li, and Yuanhui Cheng, J. Power Sources, 2013, vol. 227, pp. 41–47.

    Article  CAS  Google Scholar 

  8. Chenhui Wang, Xianfeng Li, Xiaoli Xi, Wei Zhou, Qinzhi Lai, and Huamin Zhang, Nano Energy, 2016, vol. 21, pp. 217–227.

    Article  CAS  Google Scholar 

  9. Hyeon Sun Yang, Jong Ho Park, Ho Won Ra, Chang-Soo Jin, and Jung Hoon Yang, J. Power Sources, 2016, vol. 325, pp. 446–452.

    Article  CAS  Google Scholar 

  10. Turaev, D.Yu., Russ. J. Appl. Chem., 2005, vol. 78, no. 10, pp. 1615–1619.

    Article  CAS  Google Scholar 

  11. Ponomarev, A.N., Moskvin, Yu.L., and Babenko, S.D., Russ. J. Electrochem., 2007, vol. 43, no. 3, pp. 290–295.

    Article  CAS  Google Scholar 

  12. RU Patent 2 131 633 (publ. 1999).

  13. RU Patent 2 239 260 (publ. 2004).

  14. Handbook of Electrochemistry, Cynthia G. Zoski, New Mexico State University, Department of Chemistry and Biochemistry, Las Cruces, New Mexico, USA, 2007, 1st ed.

  15. Activity Coefficients in Electrolyte Solutions, Pitzer, K.S., Ed., CRC Press, Boca Raton, FL, 1991, 2nd ed.

    Google Scholar 

  16. Spravochnik po elektrokhimii (Handbook of Electrochemistry), Sukhotin, A.M., ED., Leningrad: Khimiya, 1981.

    Google Scholar 

  17. Handbook of Batteries, David Linden and Thomas B. Reddy, McGraw–Hill Professional, 2002, 3rd ed.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Turaev.

Additional information

Original Russian Text © D.Yu. Turaev, 2018, published in Zhurnal Prikladnoi Khimii, 2018, Vol. 91, No. 7, pp. 975−982.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turaev, D.Y. Zinc-Bromine Alkali-Salt Membrane Chemical Power Cell. Russ J Appl Chem 91, 1112–1117 (2018). https://doi.org/10.1134/S1070427218070078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218070078

Keywords

Navigation