Skip to main content
Log in

Structural Viscosity and Structural Elasticity of Polymer Melts

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A new structural approach to describing the non-Newtonian flow of polymer melts is suggested. The structural rheological model is the generalization of the known Casson and Cross rheological models. The use of equations of the structural rheological model allows description of rheological curves of steady-state shear flow and of curves of dynamic moduli without using the power law and the mechanical spring and damper models. The applicability of the model to melts of polymers of different structures and the occurrence of different flow modes were demonstrated. Methods for constructing the generalized flow curve in reduced coordinates and obtaining the temperature–time superposition were suggested. The coefficients of the rheological equations depend on the temperature and molecular mass of the polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vinogradov, G.V. and Malkin, A.Ya., Reologiya polimerov (Polymer Rheology), Moscow: Khimiya, 1977.

    Google Scholar 

  2. Schramm, G., A Practical Approach to Rheology and Rheometry, Karlsruhe, Gebrueder Haake, 1994.

    Google Scholar 

  3. Malkin, A.Ya. and Isayev, A.I., Rheology: Conceptions, Methods, Applications, Toronto: ChemTec, 2005.

    Google Scholar 

  4. Barnes, H.A., A Handbook of Elementary Rheology, Aberystwyth: Inst. of Non-Newtonian Fluid Mechanics, Univ. of Wales, 2000.

    Google Scholar 

  5. Cross, M., J. Colloid Sci., 1965, vol. 20, pp. 417–437.

    Article  CAS  Google Scholar 

  6. Matveenko, V.N. and Kirsanov, E.A., Moscow Univ. Bull., Ser. 2: Chemistry, 2011, vol. 66, no. 4, pp. 199–228.

    Article  Google Scholar 

  7. Matveenko, V.N. and Kirsanov, E.A., Moscow Univ. Bull., Ser. 2: Chemistry, 2017, vol. 72, no. 2, pp. 69–91.

    Article  Google Scholar 

  8. Casson, N., Rheology of Disperse Systems, Mill, C.C., Ed., London: Pergamon, 1959, pp. 84–104.

  9. Hieber, C.A. and Chiang, H.H., Rheol. Acta, 1989, vol. 28, pp. 451–457.

    Article  Google Scholar 

  10. Hertel, D., Flow of Polyethylene Melts within and into Rectangular Ducts investigated by laser-Doppler velocimetry, Thesis, Erlangen, 2008.

    Google Scholar 

  11. Kulicke, W.-M. and Porter, R.S., Rheol. Acta, 1980, vol. 19, pp. 601–605.

    Article  CAS  Google Scholar 

  12. Nichetti, D. and Manas-Zloczower, I., J. Rheol., 1980, vol. 42, no. 4, pp. 951–969.

    Article  Google Scholar 

  13. Winter, H.W., in Advances in Heat Transfer, San Francisco: Academic, 1977, vol. 13, pp. 205–237.

    Article  CAS  Google Scholar 

  14. Panchal, R.R. and Kazmer, D., in Proc. 2007 Int. Manufacturing Science and Engineering Conf. (MSEC), Atlanta, GA, 2007, pp. 1–11.

    Google Scholar 

  15. Kirsanov, E.A. and Timoshin, Yu.N., Zhidk. Krist. Ikh Prakt. Ispol'z., 2016, vol. 16, no. 3, pp. 69–77.

    Google Scholar 

  16. Kirsanov, E.A. and Timoshin, Yu.N., Zhidk. Krist. Ikh Prakt. Ispol'z., 2015, vol. 15, no. 2, pp. 63–72.

    CAS  Google Scholar 

  17. Scribben, E., Selection of Thermotropic Liquid Crystalline Polymers for Rotational Molding, PhD Diss., Blacksburg, VA: Faculty of Virginia Polytechnic Inst. and State Univ., 2004.

    Google Scholar 

  18. Hunter, R.J., Foundations of Colloid Science, vol. 2, ch. 18: Rheology of Colloidal Dispersions, Oxford: Clarendon, 1995, pp. 922–1052.

    Google Scholar 

  19. Sentmanat, M., Wang, B.N., and McKinley, G.H., J. Rheol., 2005, vol. 49, no. 3, pp. 585–606.

    Article  CAS  Google Scholar 

  20. Stamboulides, Ch., Rheology and Processing of Molten Poly(methyl methacrylate) Resins, MSc (Appl.) Thesis, Faculty of Graduate Studies, Department of Chemical and Biological Engineering, Univ. of British Columbia, 2005.

    Google Scholar 

  21. Huang Cheng, Wood-Adams, P.M., Karjala, T.P., et al., Rheol. Acta, 2008, vol. 47, pp. 33–48.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Matveenko.

Additional information

Original Russian Text © V.N. Matveenko, E.A. Kirsanov, 2018, published in Zhurnal Prikladnoi Khimii, 2018, Vol. 91, No. 5, pp. 720−748.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matveenko, V.N., Kirsanov, E.A. Structural Viscosity and Structural Elasticity of Polymer Melts. Russ J Appl Chem 91, 839–865 (2018). https://doi.org/10.1134/S1070427218050166

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218050166

Navigation